BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 34432121)

  • 1. A deep learning-machine learning fusion approach for the classification of benign, malignant, and intermediate bone tumors.
    Liu R; Pan D; Xu Y; Zeng H; He Z; Lin J; Zeng W; Wu Z; Luo Z; Qin G; Chen W
    Eur Radiol; 2022 Feb; 32(2):1371-1383. PubMed ID: 34432121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based classification of primary bone tumors on radiographs: A preliminary study.
    He Y; Pan I; Bao B; Halsey K; Chang M; Liu H; Peng S; Sebro RA; Guan J; Yi T; Delworth AT; Eweje F; States LJ; Zhang PJ; Zhang Z; Wu J; Peng X; Bai HX
    EBioMedicine; 2020 Dec; 62():103121. PubMed ID: 33232868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of machine learning models based on X-ray radiomics for the classification and differentiation of malignant and benign bone tumors.
    von Schacky CE; Wilhelm NJ; Schäfer VS; Leonhardt Y; Jung M; Jungmann PM; Russe MF; Foreman SC; Gassert FG; Gassert FT; Schwaiger BJ; Mogler C; Knebel C; von Eisenhart-Rothe R; Makowski MR; Woertler K; Burgkart R; Gersing AS
    Eur Radiol; 2022 Sep; 32(9):6247-6257. PubMed ID: 35396665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Machine Learning to Unravel the Value of Radiographic Features for the Classification of Bone Tumors.
    Pan D; Liu R; Zheng B; Yuan J; Zeng H; He Z; Luo Z; Qin G; Chen W
    Biomed Res Int; 2021; 2021():8811056. PubMed ID: 33791381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary bone tumor detection and classification in full-field bone radiographs via YOLO deep learning model.
    Li J; Li S; Li X; Miao S; Dong C; Gao C; Liu X; Hao D; Xu W; Huang M; Cui J
    Eur Radiol; 2023 Jun; 33(6):4237-4248. PubMed ID: 36449060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multitask Deep Learning for Segmentation and Classification of Primary Bone Tumors on Radiographs.
    von Schacky CE; Wilhelm NJ; Schäfer VS; Leonhardt Y; Gassert FG; Foreman SC; Gassert FT; Jung M; Jungmann PM; Russe MF; Mogler C; Knebel C; von Eisenhart-Rothe R; Makowski MR; Woertler K; Burgkart R; Gersing AS
    Radiology; 2021 Nov; 301(2):398-406. PubMed ID: 34491126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic detection, segmentation, and classification of primary bone tumors and bone infections using an ensemble multi-task deep learning framework on multi-parametric MRIs: a multi-center study.
    Ye Q; Yang H; Lin B; Wang M; Song L; Xie Z; Lu Z; Feng Q; Zhao Y
    Eur Radiol; 2023 Dec; ():. PubMed ID: 38127073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning-assisted diagnosis of benign and malignant parotid tumors based on contrast-enhanced CT: a multicenter study.
    Yu Q; Ning Y; Wang A; Li S; Gu J; Li Q; Chen X; Lv F; Zhang X; Yue Q; Peng J
    Eur Radiol; 2023 Sep; 33(9):6054-6065. PubMed ID: 37067576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-assisted diagnosis of benign and malignant parotid tumors based on ultrasound: a retrospective study.
    Jiang T; Chen C; Zhou Y; Cai S; Yan Y; Sui L; Lai M; Song M; Zhu X; Pan Q; Wang H; Chen X; Wang K; Xiong J; Chen L; Xu D
    BMC Cancer; 2024 Apr; 24(1):510. PubMed ID: 38654281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A radiograph-based deep learning model improves radiologists' performance for classification of histological types of primary bone tumors: A multicenter study.
    Xie Z; Zhao H; Song L; Ye Q; Zhong L; Li S; Zhang R; Wang M; Chen X; Lu Z; Yang W; Zhao Y
    Eur J Radiol; 2024 May; 176():111496. PubMed ID: 38733705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning for Classification of Bone Lesions on Routine MRI.
    Eweje FR; Bao B; Wu J; Dalal D; Liao WH; He Y; Luo Y; Lu S; Zhang P; Peng X; Sebro R; Bai HX; States L
    EBioMedicine; 2021 Jun; 68():103402. PubMed ID: 34098339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning.
    Yi PH; Kim TK; Wei J; Shin J; Hui FK; Sair HI; Hager GD; Fritz J
    Pediatr Radiol; 2019 Jul; 49(8):1066-1070. PubMed ID: 31041454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine and Deep Learning Based Radiomics Models for Preoperative Prediction of Benign and Malignant Sacral Tumors.
    Yin P; Mao N; Chen H; Sun C; Wang S; Liu X; Hong N
    Front Oncol; 2020; 10():564725. PubMed ID: 33178593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features.
    Hu X; Gong J; Zhou W; Li H; Wang S; Wei M; Peng W; Gu Y
    Phys Med Biol; 2021 Mar; 66(6):065015. PubMed ID: 33596552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined radiomics and clinical variables model for prediction of malignancy in T2 hyperintense uterine mesenchymal tumors on MRI.
    Wang T; Gong J; Li Q; Chu C; Shen W; Peng W; Gu Y; Li W
    Eur Radiol; 2021 Aug; 31(8):6125-6135. PubMed ID: 33486606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening.
    Liu H; Chen Y; Zhang Y; Wang L; Luo R; Wu H; Wu C; Zhang H; Tan W; Yin H; Wang D
    Eur Radiol; 2021 Aug; 31(8):5902-5912. PubMed ID: 33496829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development, Validation, and Comparison of Image-Based, Clinical Feature-Based and Fusion Artificial Intelligence Diagnostic Models in Differentiating Benign and Malignant Pulmonary Ground-Glass Nodules.
    Wang X; Gao M; Xie J; Deng Y; Tu W; Yang H; Liang S; Xu P; Zhang M; Lu Y; Fu C; Li Q; Fan L; Liu S
    Front Oncol; 2022; 12():892890. PubMed ID: 35747810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning models of ultrasonography significantly improved the differential diagnosis performance for superficial soft-tissue masses: a retrospective multicenter study.
    Long B; Zhang H; Zhang H; Chen W; Sun Y; Tang R; Lin Y; Fu Q; Yang X; Cui L; Wang K
    BMC Med; 2023 Oct; 21(1):405. PubMed ID: 37880716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of a comprehensive brain computed tomography deep learning model on radiologist detection accuracy.
    Buchlak QD; Tang CHM; Seah JCY; Johnson A; Holt X; Bottrell GM; Wardman JB; Samarasinghe G; Dos Santos Pinheiro L; Xia H; Ahmad HK; Pham H; Chiang JI; Ektas N; Milne MR; Chiu CHY; Hachey B; Ryan MK; Johnston BP; Esmaili N; Bennett C; Goldschlager T; Hall J; Vo DT; Oakden-Rayner L; Leveque JC; Farrokhi F; Abramson RG; Jones CM; Edelstein S; Brotchie P
    Eur Radiol; 2024 Feb; 34(2):810-822. PubMed ID: 37606663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a deep learning model for breast lesion segmentation and characterization in multiparametric MRI.
    Zhu J; Geng J; Shan W; Zhang B; Shen H; Dong X; Liu M; Li X; Cheng L
    Front Oncol; 2022; 12():946580. PubMed ID: 36033449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.