These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34432344)

  • 1. Dynamic analysis of a micro-cantilever beam in non-contact mode: Classic and Strain Gradient theories.
    Ali Mohammadi M; Farajollahi M; Yousefi-Koma A
    Microsc Res Tech; 2022 Jan; 85(1):352-363. PubMed ID: 34432344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperelastic Microcantilever AFM: Efficient Detection Mechanism Based on Principal Parametric Resonance.
    Alibakhshi A; Rahmanian S; Dastjerdi S; Malikan M; Karami B; Akgöz B; Civalek Ö
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory.
    Abbasi M
    Micron; 2018 Apr; 107():20-27. PubMed ID: 29414132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant frequency and sensitivity of a caliper formed with assembled cantilever probes based on the modified strain gradient theory.
    Abbasi M; Afkhami SE
    Microsc Microanal; 2014 Dec; 20(6):1672-81. PubMed ID: 25205330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations.
    Ramezani A; Alasty A; Akbari J
    Nanotechnology; 2008 Jan; 19(1):015501. PubMed ID: 21730532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Euler-Bernoulli theory accurately predicts atomic force microscope cantilever shape during non-equilibrium snap-to-contact motion.
    Eppell SJ; Friedenberg D; Payton O; Picco L; Zypman FR
    Nanotechnology; 2020 May; 31(18):185702. PubMed ID: 31962307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variational iteration method for the nanobeams-based N/MEMS system.
    Tang W; Anjum N; He JH
    MethodsX; 2023 Dec; 11():102465. PubMed ID: 37954968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of flexural vibration mode of the rectangular atomic force microscope micro cantilevers in liquid to the surface stiffness variations.
    Farokh Payam A
    Ultramicroscopy; 2013 Dec; 135():84-8. PubMed ID: 23942312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect.
    Alibakhshi A; Dastjerdi S; Malikan M; Eremeyev VA
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment.
    Nahavandi A; Korayem MH
    Microsc Microanal; 2015 Oct; 21(5):1195-206. PubMed ID: 26324257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the atomic force microscopy vibration behavior using the Timoshenko theory by multi-scale method in the air environment.
    Korayem AH; Imani F; Korayem MH
    Microsc Res Tech; 2019 Oct; 82(10):1787-1801. PubMed ID: 31329310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Closed form solution of nonlinear oscillation of a cantilever beam using
    Mara'Beh RA; Al-Dweik AY; Yilbas BS; Sunar M
    Heliyon; 2022 Nov; 8(11):e11673. PubMed ID: 36439727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the sensitivity and resonant frequency of the torsional modes of an AFM cantilever with a sidewall probe based on a nonlocal elasticity theory.
    Abbasi M; Karami Mohammadi A
    Microsc Res Tech; 2015 May; 78(5):408-15. PubMed ID: 25755027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superlubricity using repulsive van der Waals forces.
    Feiler AA; Bergström L; Rutland MW
    Langmuir; 2008 Mar; 24(6):2274-6. PubMed ID: 18278966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling oscillatory flexure modes of an atomic force microscope cantilever in contact mode whilst imaging at high speed.
    Payton OD; Picco L; Miles MJ; Homer ME; Champneys AR
    Nanotechnology; 2012 Jul; 23(26):265702. PubMed ID: 22699489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of tip mass on frequency response and sensitivity of AFM cantilever in liquid.
    Farokh Payam A; Fathipour M
    Micron; 2015 Mar; 70():50-4. PubMed ID: 25562584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic model of the jump-to phenomenon during AFM analysis.
    Bowen J; Cheneler D
    Langmuir; 2012 Dec; 28(50):17273-86. PubMed ID: 23157559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy dissipation and dynamic response of an amplitude-modulation atomic-force microscopy subjected to a tip-sample viscous force.
    Lin SM
    Ultramicroscopy; 2007; 107(2-3):245-53. PubMed ID: 16982149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical solutions of the first three frequency shifts of AFM non-uniform probe subjected to the Lennard-Jones force.
    Lin SM; Liauh CT; Wang WR; Ho SH
    Ultramicroscopy; 2006 Apr; 106(6):508-15. PubMed ID: 16564130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method to quantitatively evaluate the Hamaker constant using the jump-into-contact effect in atomic force microscopy.
    Das S; Sreeram PA; Raychaudhuri AK
    Nanotechnology; 2007 Jan; 18(3):035501. PubMed ID: 19636120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.