These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 34432472)
21. Large Dzyaloshinskii-Moriya interaction induced by chemisorbed oxygen on a ferromagnet surface. Chen G; Mascaraque A; Jia H; Zimmermann B; Robertson M; Conte RL; Hoffmann M; González Barrio MA; Ding H; Wiesendanger R; Michel EG; Blügel S; Schmid AK; Liu K Sci Adv; 2020 Aug; 6(33):eaba4924. PubMed ID: 32851165 [TBL] [Abstract][Full Text] [Related]
22. Néel-Type Elliptical Skyrmions in a Laterally Asymmetric Magnetic Multilayer. Cui B; Yu D; Shao Z; Liu Y; Wu H; Nan P; Zhu Z; Wu C; Guo T; Chen P; Zhou HA; Xi L; Jiang W; Wang H; Liang S; Du H; Wang KL; Wang W; Wu K; Han X; Zhang G; Yang H; Yu G Adv Mater; 2021 Mar; 33(12):e2006924. PubMed ID: 33599001 [TBL] [Abstract][Full Text] [Related]
23. Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy. Zhang Y; Luo S; Yan B; Ou-Yang J; Yang X; Chen S; Zhu B; You L Nanoscale; 2017 Jul; 9(29):10212-10218. PubMed ID: 28613338 [TBL] [Abstract][Full Text] [Related]
24. Tuning the Dzyaloshinskii-Moriya interaction in Pt/Co/MgO heterostructures through the MgO thickness. Cao A; Zhang X; Koopmans B; Peng S; Zhang Y; Wang Z; Yan S; Yang H; Zhao W Nanoscale; 2018 Jul; 10(25):12062-12067. PubMed ID: 29911217 [TBL] [Abstract][Full Text] [Related]
25. Micromagnetic Design of Skyrmionic Materials and Chiral Magnetic Configurations in Patterned Nanostructures for Neuromorphic and Qubit Applications. One RA; Mican S; Cimpoeșu AG; Joldos M; Tetean R; Tiușan CV Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558263 [TBL] [Abstract][Full Text] [Related]
26. Role of isotropic and anisotropic Dzyaloshinskii-Moriya interaction on skyrmions, merons and antiskyrmions in the Bera S J Phys Condens Matter; 2024 Feb; 36(19):. PubMed ID: 38316047 [TBL] [Abstract][Full Text] [Related]
27. Gradient-Induced Dzyaloshinskii-Moriya Interaction. Liang J; Chshiev M; Fert A; Yang H Nano Lett; 2022 Dec; 22(24):10128-10133. PubMed ID: 36520645 [TBL] [Abstract][Full Text] [Related]
28. Tuning interfacial Dzyaloshinskii-Moriya interactions in thin amorphous ferrimagnetic alloys. Quessab Y; Xu JW; Ma CT; Zhou W; Riley GA; Shaw JM; Nembach HT; Poon SJ; Kent AD Sci Rep; 2020 May; 10(1):7447. PubMed ID: 32366864 [TBL] [Abstract][Full Text] [Related]
29. Strain-Driven Dzyaloshinskii-Moriya Interaction for Room-Temperature Magnetic Skyrmions. Zhang Y; Liu J; Dong Y; Wu S; Zhang J; Wang J; Lu J; Rückriegel A; Wang H; Duine R; Yu H; Luo Z; Shen K; Zhang J Phys Rev Lett; 2021 Sep; 127(11):117204. PubMed ID: 34558947 [TBL] [Abstract][Full Text] [Related]
30. Improving Néel Domain Walls Dynamics and Skyrmion Stability Using He Ion Irradiation. Balan C; van der Jagt JW; Fassatoui A; Peña Garcia J; Jeudy V; Thiaville A; Bonfim M; Vogel J; Ranno L; Ravelosona D; Pizzini S Small; 2023 Jul; 19(29):e2302039. PubMed ID: 37178408 [TBL] [Abstract][Full Text] [Related]
31. Ultrasensitive Sub-monolayer Palladium Induced Chirality Switching and Topological Evolution of Skyrmions. Chen G; Ophus C; Lo Conte R; Wiesendanger R; Yin G; Schmid AK; Liu K Nano Lett; 2022 Aug; 22(16):6678-6684. PubMed ID: 35939526 [TBL] [Abstract][Full Text] [Related]
32. Role of higher-order exchange interactions for skyrmion stability. Paul S; Haldar S; von Malottki S; Heinze S Nat Commun; 2020 Sep; 11(1):4756. PubMed ID: 32958753 [TBL] [Abstract][Full Text] [Related]
33. Influence of Dzyaloshinskii-Moriya interaction and perpendicular anisotropy on spin waves propagation in stripe domain patterns and spin spirals. Gruszecki P; Kisielewski J Sci Rep; 2023 Jan; 13(1):1218. PubMed ID: 36681720 [TBL] [Abstract][Full Text] [Related]
34. Ferroelectric Control of Magnetic Skyrmions in Two-Dimensional van der Waals Heterostructures. Huang K; Shao DF; Tsymbal EY Nano Lett; 2022 Apr; 22(8):3349-3355. PubMed ID: 35380845 [TBL] [Abstract][Full Text] [Related]
35. Strain-induced magnetic phase transition, magnetic anisotropy switching and bilayer antiferromagnetic skyrmions in van der Waals magnet CrTe Feng D; Shen Z; Xue Y; Guan Z; Xiao R; Song C Nanoscale; 2023 Jan; 15(4):1561-1567. PubMed ID: 36537877 [TBL] [Abstract][Full Text] [Related]
37. Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling. Ba Y; Zhuang S; Zhang Y; Wang Y; Gao Y; Zhou H; Chen M; Sun W; Liu Q; Chai G; Ma J; Zhang Y; Tian H; Du H; Jiang W; Nan C; Hu JM; Zhao Y Nat Commun; 2021 Jan; 12(1):322. PubMed ID: 33436572 [TBL] [Abstract][Full Text] [Related]
38. The impacts of molecular adsorption on antiferromagnetic MnPS Wang K; Ren K; Cheng Y; Chen S; Zhang G Mater Horiz; 2022 Aug; 9(9):2384-2392. PubMed ID: 35781317 [TBL] [Abstract][Full Text] [Related]
39. Rashba-like Spin Textures in Graphene Promoted by Ferromagnet-Mediated Electronic Hybridization with a Heavy Metal. Muñiz Cano B; Gudín A; Sánchez-Barriga J; Clark O; Anadón A; Díez JM; Olleros-Rodríguez P; Ajejas F; Arnay I; Jugovac M; Rault J; Le Fèvre P; Bertran F; Mazhjoo D; Bihlmayer G; Rader O; Blügel S; Miranda R; Camarero J; Valbuena MA; Perna P ACS Nano; 2024 Jun; 18(24):15716-15728. PubMed ID: 38847339 [TBL] [Abstract][Full Text] [Related]
40. Anisotropic Dzyaloshinskii-Moriya Interaction and Topological Magnetism in Two-Dimensional Magnets Protected by Cui Q; Zhu Y; Ga Y; Liang J; Li P; Yu D; Cui P; Yang H Nano Lett; 2022 Mar; 22(6):2334-2341. PubMed ID: 35266723 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]