BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34432923)

  • 1. Technical considerations in Hi-C scaffolding and evaluation of chromosome-scale genome assemblies.
    Yamaguchi K; Kadota M; Nishimura O; Ohishi Y; Naito Y; Kuraku S
    Mol Ecol; 2021 Dec; 30(23):5923-5934. PubMed ID: 34432923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding?
    Kadota M; Nishimura O; Miura H; Tanaka K; Hiratani I; Kuraku S
    Gigascience; 2020 Jan; 9(1):. PubMed ID: 31919520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient iterative Hi-C scaffolder based on N-best neighbors.
    Guan D; McCarthy SA; Ning Z; Wang G; Wang Y; Durbin R
    BMC Bioinformatics; 2021 Nov; 22(1):569. PubMed ID: 34837944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.
    Peichel CL; Sullivan ST; Liachko I; White MA
    J Hered; 2017 Sep; 108(6):693-700. PubMed ID: 28821183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Hi-C-Based Scaffolding Tools on Plant Genomes.
    Hou Y; Wang L; Pan W
    Genes (Basel); 2023 Nov; 14(12):. PubMed ID: 38136968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HapSolo: an optimization approach for removing secondary haplotigs during diploid genome assembly and scaffolding.
    Solares EA; Tao Y; Long AD; Gaut BS
    BMC Bioinformatics; 2021 Jan; 22(1):9. PubMed ID: 33407090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffolding of long read assemblies using long range contact information.
    Ghurye J; Pop M; Koren S; Bickhart D; Chin CS
    BMC Genomics; 2017 Jul; 18(1):527. PubMed ID: 28701198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hi-C scaffolded short- and long-read genome assemblies of the California sea lion are broadly consistent for syntenic inference across 45 million years of evolution.
    Peart CR; Williams C; Pophaly SD; Neely BA; Gulland FMD; Adams DJ; Ng BL; Cheng W; Goebel ME; Fedrigo O; Haase B; Mountcastle J; Fungtammasan A; Formenti G; Collins J; Wood J; Sims Y; Torrance J; Tracey A; Howe K; Rhie A; Hoffman JI; Johnson J; Jarvis ED; Breen M; Wolf JBW
    Mol Ecol Resour; 2021 Oct; 21(7):2455-2470. PubMed ID: 34097816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions.
    Burton JN; Adey A; Patwardhan RP; Qiu R; Kitzman JO; Shendure J
    Nat Biotechnol; 2013 Dec; 31(12):1119-25. PubMed ID: 24185095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosome-Level Genome Assemblies Expand Capabilities of Genomics for Conservation Biology.
    Totikov A; Tomarovsky A; Prokopov D; Yakupova A; Bulyonkova T; Derezanin L; Rasskazov D; Wolfsberger WW; Koepfli KP; Oleksyk TK; Kliver S
    Genes (Basel); 2021 Aug; 12(9):. PubMed ID: 34573318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hi-C techniques: from genome assemblies to transcription regulation.
    Šimková H; Câmara AS; Mascher M
    J Exp Bot; 2024 Mar; ():. PubMed ID: 38430521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships.
    Lohia R; Fox N; Gillis J
    Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo assembly of a chromosome-level reference genome of red-spotted grouper (Epinephelus akaara) using nanopore sequencing and Hi-C.
    Ge H; Lin K; Shen M; Wu S; Wang Y; Zhang Z; Wang Z; Zhang Y; Huang Z; Zhou C; Lin Q; Wu J; Liu L; Hu J; Huang Z; Zheng L
    Mol Ecol Resour; 2019 Nov; 19(6):1461-1469. PubMed ID: 31325912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tethered Chromosome Conformation Capture Sequencing in Triticeae: A Valuable Tool for Genome Assembly.
    Himmelbach A; Walde I; Mascher M; Stein N
    Bio Protoc; 2018 Aug; 8(15):e2955. PubMed ID: 34395764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Madagascar ground gecko genome analysis characterizes asymmetric fates of duplicated genes.
    Hara Y; Takeuchi M; Kageyama Y; Tatsumi K; Hibi M; Kiyonari H; Kuraku S
    BMC Biol; 2018 Apr; 16(1):40. PubMed ID: 29661185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosome-level genome assembly of the greenfin horse-faced filefish (Thamnaconus septentrionalis) using Oxford Nanopore PromethION sequencing and Hi-C technology.
    Bian L; Li F; Ge J; Wang P; Chang Q; Zhang S; Li J; Liu C; Liu K; Liu X; Li X; Chen H; Chen S; Shao C; Lin Z
    Mol Ecol Resour; 2020 Jul; 20(4):1069-1079. PubMed ID: 32390337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A chromosome-level genome assembly provides new insights into paternal genome elimination in the cotton mealybug Phenacoccus solenopsis.
    Li M; Tong H; Wang S; Ye W; Li Z; Omar MAA; Ao Y; Ding S; Li Z; Wang Y; Yin C; Zhao X; He K; Liu F; Chen X; Mei Y; Walters JR; Jiang M; Li F
    Mol Ecol Resour; 2020 Nov; 20(6):1733-1747. PubMed ID: 33460249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions.
    Padmarasu S; Himmelbach A; Mascher M; Stein N
    Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome Conformation Capture of Mitotic Chromosomes.
    Cápal P
    Methods Mol Biol; 2023; 2672():485-500. PubMed ID: 37335495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EndHiC: assemble large contigs into chromosome-level scaffolds using the Hi-C links from contig ends.
    Wang S; Wang H; Jiang F; Wang A; Liu H; Zhao H; Yang B; Xu D; Zhang Y; Fan W
    BMC Bioinformatics; 2022 Dec; 23(1):528. PubMed ID: 36482318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.