BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 34433020)

  • 1. Evaluating the impact of age on immune checkpoint therapy biomarkers.
    Erbe R; Wang Z; Wu S; Xiu J; Zaidi N; La J; Tuck D; Fillmore N; Giraldo NA; Topper M; Baylin S; Lippman M; Isaacs C; Basho R; Serebriiskii I; Lenz HJ; Astsaturov I; Marshall J; Taverna J; Lee J; Jaffee EM; Roussos Torres ET; Weeraratna A; Easwaran H; Fertig EJ
    Cell Rep; 2021 Aug; 36(8):109599. PubMed ID: 34433020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging big data of immune checkpoint blockade response identifies novel potential targets.
    Bareche Y; Kelly D; Abbas-Aghababazadeh F; Nakano M; Esfahani PN; Tkachuk D; Mohammad H; Samstein R; Lee CH; Morris LGT; Bedard PL; Haibe-Kains B; Stagg J
    Ann Oncol; 2022 Dec; 33(12):1304-1317. PubMed ID: 36055464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomarkers of Immune Checkpoint Blockade Response in Triple-Negative Breast Cancer.
    Isaacs J; Anders C; McArthur H; Force J
    Curr Treat Options Oncol; 2021 Mar; 22(5):38. PubMed ID: 33743085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer.
    Negrao MV; Skoulidis F; Montesion M; Schulze K; Bara I; Shen V; Xu H; Hu S; Sui D; Elamin YY; Le X; Goldberg ME; Murugesan K; Wu CJ; Zhang J; Barreto DS; Robichaux JP; Reuben A; Cascone T; Gay CM; Mitchell KG; Hong L; Rinsurongkawong W; Roth JA; Swisher SG; Lee J; Tsao A; Papadimitrakopoulou V; Gibbons DL; Glisson BS; Singal G; Miller VA; Alexander B; Frampton G; Albacker LA; Shames D; Zhang J; Heymach JV
    J Immunother Cancer; 2021 Aug; 9(8):. PubMed ID: 34376553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome Deconvolution Reveals Absence of Cancer Cell Expression Signature in Immune Checkpoint Blockade Response.
    Guo YA; Kulshrestha T; Chang MM; Kassam I; Revkov E; Rizzetto S; Tan AC; Tan DSW; Tan IB; Skanderup AJ
    Cancer Res Commun; 2024 Jun; 4(6):1581-1596. PubMed ID: 38722600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PD-L1 Expression, Tumor Mutational Burden, and Cancer Gene Mutations Are Stronger Predictors of Benefit from Immune Checkpoint Blockade than HLA Class I Genotype in Non-Small Cell Lung Cancer.
    Negrao MV; Lam VK; Reuben A; Rubin ML; Landry LL; Roarty EB; Rinsurongkawong W; Lewis J; Roth JA; Swisher SG; Gibbons DL; Wistuba II; Papadimitrakopoulou V; Glisson BS; Blumenschein GR; Lee JJ; Heymach JV; Zhang J
    J Thorac Oncol; 2019 Jun; 14(6):1021-1031. PubMed ID: 30780001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring immune-checkpoint blockade: response evaluation and biomarker development.
    Nishino M; Ramaiya NH; Hatabu H; Hodi FS
    Nat Rev Clin Oncol; 2017 Nov; 14(11):655-668. PubMed ID: 28653677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Genomic Biomarkers to Guide Immunotherapy in Non-Small Cell Lung Cancer.
    van de Haar J; Mankor JM; Hummelink K; Monkhorst K; Smit EF; Wessels LFA; Cuppen E; Aerts JGJV; Voest EE
    Clin Cancer Res; 2024 Apr; 30(7):1307-1318. PubMed ID: 38300729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevalence of PDL1 Amplification and Preliminary Response to Immune Checkpoint Blockade in Solid Tumors.
    Goodman AM; Piccioni D; Kato S; Boichard A; Wang HY; Frampton G; Lippman SM; Connelly C; Fabrizio D; Miller V; Sicklick JK; Kurzrock R
    JAMA Oncol; 2018 Sep; 4(9):1237-1244. PubMed ID: 29902298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Combination of Biomarkers Predict Response to Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer.
    Jiang Z; Zhou Y; Huang J
    Front Immunol; 2021; 12():813331. PubMed ID: 35003141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The immune response-related mutational signatures and driver genes in non-small-cell lung cancer.
    Chen H; Chong W; Teng C; Yao Y; Wang X; Li X
    Cancer Sci; 2019 Aug; 110(8):2348-2356. PubMed ID: 31222843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards In Silico Prediction of the Immune-Checkpoint Blockade Response.
    Chen K; Ye H; Lu XJ; Sun B; Liu Q
    Trends Pharmacol Sci; 2017 Dec; 38(12):1041-1051. PubMed ID: 29089139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor-targeted interleukin-12 synergizes with entinostat to overcome PD-1/PD-L1 blockade-resistant tumors harboring MHC-I and APM deficiencies.
    Minnar CM; Chariou PL; Horn LA; Hicks KC; Palena C; Schlom J; Gameiro SR
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35764364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting immunotherapy response through genomics.
    Cormedi MCV; Van Allen EM; Colli LM
    Curr Opin Genet Dev; 2021 Feb; 66():1-9. PubMed ID: 33307238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-Related Differences in Molecular Profiles for Immune Checkpoint Blockade Therapy.
    Zhang QJ; Luan JC; Song LB; Cong R; Ji CJ; Zhou X; Xia JD; Song NH
    Front Immunol; 2021; 12():657575. PubMed ID: 33936087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational Landscape and Sensitivity to Immune Checkpoint Blockers.
    Chabanon RM; Pedrero M; Lefebvre C; Marabelle A; Soria JC; Postel-Vinay S
    Clin Cancer Res; 2016 Sep; 22(17):4309-21. PubMed ID: 27390348
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Klümper N; Ralser DJ; Zarbl R; Schlack K; Schrader AJ; Rehlinghaus M; Hoffmann MJ; Niegisch G; Uhlig A; Trojan L; Steinestel J; Steinestel K; Wirtz RM; Sikic D; Eckstein M; Kristiansen G; Toma M; Hölzel M; Ritter M; Strieth S; Ellinger J; Dietrich D
    J Immunother Cancer; 2021 Aug; 9(8):. PubMed ID: 34446578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel genomic signature predictive of response to immune checkpoint blockade: A pan-cancer analysis from project Genomics Evidence Neo-plasia Information Exchange (GENIE).
    Swami N; Hwang WL; Guo JA; Hoffman H; Abramowitz MC; Elbakouny Z; Beltran H; Chipidza F; Choueiri T; Pra AD; Huang F; Kaochar S; Kantoff P; Kim DW; Kishan AU; Kobetz E; Marinac C; Mucci LA; Muralidhar V; Pollack A; Sanford NN; Schaeffer EM; Spratt DE; Zhao SG; Rebbeck TR; Nguyen PL; Feng FY; Mahal BA; Alshalalfa M
    Cancer Genet; 2021 Nov; 258-259():61-68. PubMed ID: 34551377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistochemical scoring of CD38 in the tumor microenvironment predicts responsiveness to anti-PD-1/PD-L1 immunotherapy in hepatocellular carcinoma.
    Ng HHM; Lee RY; Goh S; Tay ISY; Lim X; Lee B; Chew V; Li H; Tan B; Lim S; Lim JCT; Au B; Loh JJH; Saraf S; Connolly JE; Loh T; Leow WQ; Lee JJX; Toh HC; Malavasi F; Lee SY; Chow P; Newell EW; Choo SP; Tai D; Yeong J; Lim TKH
    J Immunother Cancer; 2020 Aug; 8(2):. PubMed ID: 32847986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrophage correlates with immunophenotype and predicts anti-PD-L1 response of urothelial cancer.
    Zeng D; Ye Z; Wu J; Zhou R; Fan X; Wang G; Huang Y; Wu J; Sun H; Wang M; Bin J; Liao Y; Li N; Shi M; Liao W
    Theranostics; 2020; 10(15):7002-7014. PubMed ID: 32550918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.