These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34433159)

  • 21. A systematic survey of centrality measures for protein-protein interaction networks.
    Ashtiani M; Salehzadeh-Yazdi A; Razaghi-Moghadam Z; Hennig H; Wolkenhauer O; Mirzaie M; Jafari M
    BMC Syst Biol; 2018 Jul; 12(1):80. PubMed ID: 30064421
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Node property of weighted networks considering connectability to nodes within two degrees of separation.
    Amano SI; Ogawa KI; Miyake Y
    Sci Rep; 2018 May; 8(1):8464. PubMed ID: 29855527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effective identification of essential proteins based on priori knowledge, network topology and gene expressions.
    Li M; Zheng R; Zhang H; Wang J; Pan Y
    Methods; 2014 Jun; 67(3):325-33. PubMed ID: 24565748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How accurate and statistically robust are catalytic site predictions based on closeness centrality?
    Chea E; Livesay DR
    BMC Bioinformatics; 2007 May; 8():153. PubMed ID: 17498304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graph-theoretical comparison of normal and tumor networks in identifying BRCA genes.
    Dopazo J; Erten C
    BMC Syst Biol; 2017 Nov; 11(1):110. PubMed ID: 29166896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Range-limited centrality measures in complex networks.
    Ercsey-Ravasz M; Lichtenwalter RN; Chawla NV; Toroczkai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066103. PubMed ID: 23005158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using robotics to fold proteins and dock ligands.
    Brutlag D; Apaydin S; Guestrin C; Hsu D; Varma C; Singh A; Latombe JC
    Bioinformatics; 2002; 18 Suppl 2():S74. PubMed ID: 12385986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards a methodology for validation of centrality measures in complex networks.
    Batool K; Niazi MA
    PLoS One; 2014; 9(4):e90283. PubMed ID: 24709999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Percolation-like phase transitions in network models of protein dynamics.
    Weber JK; Pande VS
    J Chem Phys; 2015 Jun; 142(21):215105. PubMed ID: 26049529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folding with a protein's native shortcut network.
    Khor S
    Proteins; 2018 Sep; 86(9):924-934. PubMed ID: 29790602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aggregated network centrality shows non-random structure of genomic and proteomic networks.
    Halder AK; Denkiewicz M; Sengupta K; Basu S; Plewczynski D
    Methods; 2020 Oct; 181-182():5-14. PubMed ID: 31740366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks.
    Azad A; Pavlopoulos GA; Ouzounis CA; Kyrpides NC; Buluç A
    Nucleic Acids Res; 2018 Apr; 46(6):e33. PubMed ID: 29315405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uncovering allosteric pathways in caspase-1 using Markov transient analysis and multiscale community detection.
    Amor B; Yaliraki SN; Woscholski R; Barahona M
    Mol Biosyst; 2014 Aug; 10(8):2247-58. PubMed ID: 24947802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Random Walks on Networks with Centrality-Based Stochastic Resetting.
    Zelenkovski K; Sandev T; Metzler R; Kocarev L; Basnarkov L
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PS-MCL: parallel shotgun coarsened Markov clustering of protein interaction networks.
    Lim Y; Yu I; Seo D; Kang U; Sael L
    BMC Bioinformatics; 2019 Jul; 20(Suppl 13):381. PubMed ID: 31337329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An ensemble framework for identifying essential proteins.
    Zhang X; Xiao W; Acencio ML; Lemke N; Wang X
    BMC Bioinformatics; 2016 Aug; 17(1):322. PubMed ID: 27557880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From Structure to Activity: Using Centrality Measures to Predict Neuronal Activity.
    Fletcher JM; Wennekers T
    Int J Neural Syst; 2018 Mar; 28(2):1750013. PubMed ID: 28076982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical analysis of first-passage processes in finite Markov chains exhibiting metastability.
    Sharpe DJ; Wales DJ
    Phys Rev E; 2021 Jul; 104(1-2):015301. PubMed ID: 34412280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of path-based centrality measures in protein-protein interaction networks revealed proteins with phenotypic relevance during adaptation to changing nitrogen environments.
    Gilbert M; Li Z; Wu XN; Rohr L; Gombos S; Harter K; Schulze WX
    J Proteomics; 2021 Mar; 235():104114. PubMed ID: 33453437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical closeness efficiently predicts disease genes in a directed signaling network.
    Tran TD; Kwon YK
    Comput Biol Chem; 2014 Dec; 53PB():191-197. PubMed ID: 25462327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.