These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34433236)

  • 1. Bacillus thuringiensis RZ2MS9, a tropical plant growth-promoting rhizobacterium, colonizes maize endophytically and alters the plant's production of volatile organic compounds during co-inoculation with Azospirillum brasilense Ab-V5.
    de Almeida JR; Bonatelli ML; Batista BD; Teixeira-Silva NS; Mondin M; Dos Santos RC; Bento JMS; de Almeida Hayashibara CA; Azevedo JL; Quecine MC
    Environ Microbiol Rep; 2021 Dec; 13(6):812-821. PubMed ID: 34433236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system.
    Figueredo EF; Cruz TAD; Almeida JR; Batista BD; Marcon J; Andrade PAM; Hayashibara CAA; Rosa MS; Azevedo JL; Quecine MC
    Microbiol Res; 2023 Jan; 266():127218. PubMed ID: 36242861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and salt stress effects on the survival of plant growth-promoting bacteria Azospirillum brasilense in inoculants for maize cultivation.
    da Cunha ET; Pedrolo AM; Arisi ACM
    J Sci Food Agric; 2024 Jul; 104(9):5360-5367. PubMed ID: 38324183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The auxin-producing Bacillus thuringiensis RZ2MS9 promotes the growth and modifies the root architecture of tomato (Solanum lycopersicum cv. Micro-Tom).
    Batista BD; Dourado MN; Figueredo EF; Hortencio RO; Marques JPR; Piotto FA; Bonatelli ML; Settles ML; Azevedo JL; Quecine MC
    Arch Microbiol; 2021 Sep; 203(7):3869-3882. PubMed ID: 34013419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Associative bacteria influence maize (Zea mays L.) growth, physiology and root anatomy under different nitrogen levels.
    Calzavara AK; Paiva PHG; Gabriel LC; Oliveira ALM; Milani K; Oliveira HC; Bianchini E; Pimenta JA; de Oliveira MCN; Dias-Pereira J; Stolf-Moreira R
    Plant Biol (Stuttg); 2018 Sep; 20(5):870-878. PubMed ID: 29762883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense.
    Fukami J; Ollero FJ; de la Osa C; Valderrama-Fernández R; Nogueira MA; Megías M; Hungria M
    Arch Microbiol; 2018 Oct; 200(8):1191-1203. PubMed ID: 29881875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maize-Azospirillum brasilense interaction: accessing maize's miRNA expression under the effect of an inhibitor of indole-3-acetic acid production by the plant.
    Espindula E; Passaglia LMP
    Braz J Microbiol; 2024 Mar; 55(1):101-109. PubMed ID: 38214876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6.
    Fukami J; Abrantes JLF; Del Cerro P; Nogueira MA; Ollero FJ; Megías M; Hungria M
    Arch Microbiol; 2018 Jan; 200(1):47-56. PubMed ID: 28780591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense.
    Brusamarello-Santos LC; Gilard F; Brulé L; Quilleré I; Gourion B; Ratet P; Maltempi de Souza E; Lea PJ; Hirel B
    PLoS One; 2017; 12(3):e0174576. PubMed ID: 28362815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-inoculation with tropical strains of Azospirillum and Bacillus is more efficient than single inoculation for improving plant growth and nutrient uptake in maize.
    Ribeiro VP; Gomes EA; de Sousa SM; de Paula Lana UG; Coelho AM; Marriel IE; de Oliveira-Paiva CA
    Arch Microbiol; 2022 Jan; 204(2):143. PubMed ID: 35044594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of nitrogen metabolism of maize plants inoculated with Azospirillum brasilense and Herbaspirillum seropedicae.
    da Fonseca Breda FA; da Silva TFR; Dos Santos SG; Alves GC; Reis VM
    Arch Microbiol; 2019 May; 201(4):547-558. PubMed ID: 30448870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays).
    Herschkovitz Y; Lerner A; Davidov Y; Rothballer M; Hartmann A; Okon Y; Jurkevitch E
    Microb Ecol; 2005 Aug; 50(2):277-88. PubMed ID: 16211327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes.
    Zeffa DM; Perini LJ; Silva MB; de Sousa NV; Scapim CA; Oliveira ALM; Amaral Júnior ATD; Azeredo Gonçalves LS
    PLoS One; 2019; 14(4):e0215332. PubMed ID: 30998695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth.
    Fukami J; Ollero FJ; Megías M; Hungria M
    AMB Express; 2017 Dec; 7(1):153. PubMed ID: 28724262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa.
    Santos F; Peñaflor MF; Paré PW; Sanches PA; Kamiya AC; Tonelli M; Nardi C; Bento JM
    PLoS One; 2014; 9(11):e113280. PubMed ID: 25405495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants.
    Rodríguez-Salazar J; Suárez R; Caballero-Mellado J; Iturriaga G
    FEMS Microbiol Lett; 2009 Jul; 296(1):52-9. PubMed ID: 19459961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maize Inoculation with
    Oliveira ALM; Santos OJAP; Marcelino PRF; Milani KML; Zuluaga MYA; Zucareli C; Gonçalves LSA
    Front Microbiol; 2017; 8():1873. PubMed ID: 29018432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host-specific proteomic and growth analysis of maize and tomato seedlings inoculated with Azospirillum brasilense Sp7.
    Lade SB; Román C; Cueto-Ginzo AI; Serrano L; Sin E; Achón MA; Medina V
    Plant Physiol Biochem; 2018 Aug; 129():381-393. PubMed ID: 29945074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additive and heterozygous (dis)advantage GWAS models reveal candidate genes involved in the genotypic variation of maize hybrids to Azospirillum brasilense.
    Vidotti MS; Lyra DH; Morosini JS; Granato ÍSC; Quecine MC; Azevedo JL; Fritsche-Neto R
    PLoS One; 2019; 14(9):e0222788. PubMed ID: 31536609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs.
    Gómez-Godínez LJ; Fernandez-Valverde SL; Martinez Romero JC; Martínez-Romero E
    Syst Appl Microbiol; 2019 Jul; 42(4):517-525. PubMed ID: 31176475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.