These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34433414)
1. TLGP: a flexible transfer learning algorithm for gene prioritization based on heterogeneous source domain. Wang Y; Xia Z; Deng J; Xie X; Gong M; Ma X BMC Bioinformatics; 2021 Aug; 22(Suppl 9):274. PubMed ID: 34433414 [TBL] [Abstract][Full Text] [Related]
2. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model. Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360 [TBL] [Abstract][Full Text] [Related]
3. A scalable random walk with restart on heterogeneous networks with Apache Spark for ranking disease-related genes through type-II fuzzy data fusion. Joodaki M; Ghadiri N; Maleki Z; Lotfi Shahreza M J Biomed Inform; 2021 Mar; 115():103688. PubMed ID: 33545331 [TBL] [Abstract][Full Text] [Related]
4. Network-based ranking methods for prediction of novel disease associated microRNAs. Le DH Comput Biol Chem; 2015 Oct; 58():139-48. PubMed ID: 26231308 [TBL] [Abstract][Full Text] [Related]
5. A novel candidate disease genes prioritization method based on module partition and rank fusion. Chen X; Yan GY; Liao XP OMICS; 2010 Aug; 14(4):337-56. PubMed ID: 20726795 [TBL] [Abstract][Full Text] [Related]
6. Interactogeneous: disease gene prioritization using heterogeneous networks and full topology scores. Gonçalves JP; Francisco AP; Moreau Y; Madeira SC PLoS One; 2012; 7(11):e49634. PubMed ID: 23185389 [TBL] [Abstract][Full Text] [Related]
7. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression. Zhang SW; Shao DD; Zhang SY; Wang YB Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957 [TBL] [Abstract][Full Text] [Related]
8. Prioritizing disease genes with an improved dual label propagation framework. Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030 [TBL] [Abstract][Full Text] [Related]
9. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods. Valentini G; Paccanaro A; Caniza H; Romero AE; Re M Artif Intell Med; 2014 Jun; 61(2):63-78. PubMed ID: 24726035 [TBL] [Abstract][Full Text] [Related]
10. Connectivity Significance for Disease Gene Prioritization in an Expanding Universe. Petti M; Bizzarri D; Verrienti A; Falcone R; Farina L IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2155-2161. PubMed ID: 31484130 [TBL] [Abstract][Full Text] [Related]
11. Deep Large-Scale Multitask Learning Network for Gene Expression Inference. Dizaji KG; Chen W; Huang H J Comput Biol; 2021 May; 28(5):485-500. PubMed ID: 34014778 [TBL] [Abstract][Full Text] [Related]
12. Gene2DisCo: Gene to disease using disease commonalities. Frasca M Artif Intell Med; 2017 Oct; 82():34-46. PubMed ID: 28882544 [TBL] [Abstract][Full Text] [Related]
13. Clustering of Cancer Attributed Networks by Dynamically and Jointly Factorizing Multi-Layer Graphs. Huang Z; Wang Y; Ma X IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2737-2748. PubMed ID: 34143738 [TBL] [Abstract][Full Text] [Related]
14. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network. Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543 [TBL] [Abstract][Full Text] [Related]
15. GuiltyTargets: Prioritization of Novel Therapeutic Targets With Network Representation Learning. Muslu O; Hoyt CT; Lacerda M; Hofmann-Apitius M; Frohlich H IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):491-500. PubMed ID: 32750869 [TBL] [Abstract][Full Text] [Related]
16. A machine learning framework that integrates multi-omics data predicts cancer-related LncRNAs. Yuan L; Zhao J; Sun T; Shen Z BMC Bioinformatics; 2021 Jun; 22(1):332. PubMed ID: 34134612 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures. Li Y; Sahni N; Yi S Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983 [TBL] [Abstract][Full Text] [Related]
18. Network-Based Approaches for Disease-Gene Association Prediction Using Protein-Protein Interaction Networks. Kim Y; Park JH; Cho YR Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806415 [TBL] [Abstract][Full Text] [Related]
19. Scalable Non-Linear Graph Fusion for Prioritizing Cancer-Causing Genes. Shah E; Maji P IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1130-1143. PubMed ID: 32966220 [TBL] [Abstract][Full Text] [Related]
20. A deep learning model based on sparse auto-encoder for prioritizing cancer-related genes and drug target combinations. Chang JW; Ding Y; Tahir Ul Qamar M; Shen Y; Gao J; Chen LL Carcinogenesis; 2019 Jul; 40(5):624-632. PubMed ID: 30944926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]