BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34433641)

  • 1. Lithium preserves peritoneal membrane integrity by suppressing mesothelial cell αB-crystallin.
    Herzog R; Sacnun JM; González-Mateo G; Bartosova M; Bialas K; Wagner A; Unterwurzacher M; Sobieszek IJ; Daniel-Fischer L; Rusai K; Pascual-Antón L; Kaczirek K; Vychytil A; Schmitt CP; López-Cabrera M; Alper SL; Aufricht C; Kratochwill K
    Sci Transl Med; 2021 Aug; 13(608):. PubMed ID: 34433641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GSK-3β inhibition protects mesothelial cells during experimental peritoneal dialysis through upregulation of the heat shock response.
    Rusai K; Herzog R; Kuster L; Kratochwill K; Aufricht C
    Cell Stress Chaperones; 2013 Sep; 18(5):569-79. PubMed ID: 23494401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nebivolol, a β1-adrenergic blocker, protects from peritoneal membrane damage induced during peritoneal dialysis.
    Liappas G; González-Mateo G; Aguirre AR; Abensur H; Albar-Vizcaino P; Parra EG; Sandoval P; Ramírez LG; Del Peso G; Acedo JM; Bajo MA; Selgas R; Sánchez Tomero JA; López-Cabrera M; Aguilera A
    Oncotarget; 2016 May; 7(21):30133-46. PubMed ID: 27102153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of biocompatible peritoneal dialysis fluids on human mesothelial and endothelial cells in 2D and 3D phenotypes.
    Jagirdar RM; Pitaraki E; Rouka E; Papazoglou ED; Bartosova M; Zebekakis P; Schmitt CP; Zarogiannis SG; Liakopoulos V
    Artif Organs; 2024 May; 48(5):484-494. PubMed ID: 38151979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor.
    Aroeira LS; Aguilera A; Selgas R; Ramírez-Huesca M; Pérez-Lozano ML; Cirugeda A; Bajo MA; del Peso G; Sánchez-Tomero JA; Jiménez-Heffernan JA; López-Cabrera M
    Am J Kidney Dis; 2005 Nov; 46(5):938-48. PubMed ID: 16253736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose.
    Yang X; Bao M; Fang Y; Yu X; Ji J; Ding X
    J Transl Med; 2021 Jun; 19(1):283. PubMed ID: 34193173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis.
    Kariya T; Nishimura H; Mizuno M; Suzuki Y; Matsukawa Y; Sakata F; Maruyama S; Takei Y; Ito Y
    Am J Physiol Renal Physiol; 2018 Feb; 314(2):F167-F180. PubMed ID: 28978530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo analysis of dialysis effluent-derived mesothelial cells as an approach to unveiling the mechanism of peritoneal membrane failure.
    López-Cabrera M; Aguilera A; Aroeira LS; Ramírez-Huesca M; Pérez-Lozano ML; Jiménez-Heffernan JA; Bajo MA; del Peso G; Sánchez-Tomero JA; Selgas R
    Perit Dial Int; 2006; 26(1):26-34. PubMed ID: 16538870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifibrotic role of αB-crystallin inhibition in pleural and subpleural fibrosis.
    Bellaye PS; Burgy O; Colas J; Fabre A; Marchal-Somme J; Crestani B; Kolb M; Camus P; Garrido C; Bonniaud P
    Am J Respir Cell Mol Biol; 2015 Feb; 52(2):244-52. PubMed ID: 25032514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pathogenetic role for endothelin-1 in peritoneal dialysis-associated fibrosis.
    Busnadiego O; Loureiro-Álvarez J; Sandoval P; Lagares D; Dotor J; Pérez-Lozano ML; López-Armada MJ; Lamas S; López-Cabrera M; Rodríguez-Pascual F
    J Am Soc Nephrol; 2015 Jan; 26(1):173-82. PubMed ID: 25012164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic or pharmacologic blockade of enhancer of zeste homolog 2 inhibits the progression of peritoneal fibrosis.
    Shi Y; Tao M; Wang Y; Zang X; Ma X; Qiu A; Zhuang S; Liu N
    J Pathol; 2020 Jan; 250(1):79-94. PubMed ID: 31579944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage.
    Loureiro J; Aguilera A; Selgas R; Sandoval P; Albar-Vizcaíno P; Pérez-Lozano ML; Ruiz-Carpio V; Majano PL; Lamas S; Rodríguez-Pascual F; Borras-Cuesta F; Dotor J; López-Cabrera M
    J Am Soc Nephrol; 2011 Sep; 22(9):1682-95. PubMed ID: 21742730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of epithelial-to-mesenchymal transition on acute stress response in human peritoneal mesothelial cells.
    Vargha R; Bender TO; Riesenhuber A; Endemann M; Kratochwill K; Aufricht C
    Nephrol Dial Transplant; 2008 Nov; 23(11):3494-500. PubMed ID: 18577533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WNT signaling is required for peritoneal membrane angiogenesis.
    Padwal M; Cheng G; Liu L; Boivin F; Gangji AS; Brimble KS; Bridgewater D; Margetts PJ
    Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1036-F1045. PubMed ID: 29363326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of icodextrin on integrin-mediated wound healing of peritoneal mesothelial cells.
    Matsumoto M; Tamura M; Miyamoto T; Furuno Y; Kabashima N; Serino R; Shibata T; Kanegae K; Takeuchi M; Abe H; Okazaki M; Otsuji Y
    Life Sci; 2012 Jun; 90(23-24):917-23. PubMed ID: 22564410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury.
    Chen YT; Chang YT; Pan SY; Chou YH; Chang FC; Yeh PY; Liu YH; Chiang WC; Chen YM; Wu KD; Tsai TJ; Duffield JS; Lin SL
    J Am Soc Nephrol; 2014 Dec; 25(12):2847-58. PubMed ID: 24854266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor.
    Li X; Liu H; Sun L; Zhou X; Yuan X; Chen Y; Liu F; Liu Y; Xiao L
    J Cell Mol Med; 2019 Apr; 23(4):2372-2383. PubMed ID: 30693641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gremlin promotes peritoneal membrane injury in an experimental mouse model and is associated with increased solute transport in peritoneal dialysis patients.
    Siddique I; Curran SP; Ghayur A; Liu L; Shi W; Hoff CM; Gangji AS; Brimble KS; Margetts PJ
    Am J Pathol; 2014 Nov; 184(11):2976-84. PubMed ID: 25194662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of hyperglycolysis in mesothelial cells prevents peritoneal fibrosis.
    Si M; Wang Q; Li Y; Lin H; Luo D; Zhao W; Dou X; Liu J; Zhang H; Huang Y; Lou T; Hu Z; Peng H
    Sci Transl Med; 2019 Jun; 11(495):. PubMed ID: 31167927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of epithelial-to-mesenchymal transition of mesothelial cells in a mouse model of chronic peritoneal exposure to high glucose dialysate.
    Aroeira LS; Loureiro J; González-Mateo GT; Fernandez-Millara V; del Peso G; Sánchez-Tomero JA; Ruiz-Ortega M; Bajo MA; López-Cabrera M; Selgas R
    Perit Dial Int; 2008 Nov; 28 Suppl 5():S29-33. PubMed ID: 19008536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.