These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 34433880)
1. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Kim Y; Hyon Y; Jung SS; Lee S; Yoo G; Chung C; Ha T Sci Rep; 2021 Aug; 11(1):17186. PubMed ID: 34433880 [TBL] [Abstract][Full Text] [Related]
2. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis. Gurung A; Scrafford CG; Tielsch JM; Levine OS; Checkley W Respir Med; 2011 Sep; 105(9):1396-403. PubMed ID: 21676606 [TBL] [Abstract][Full Text] [Related]
4. Practical implementation of artificial intelligence algorithms in pulmonary auscultation examination. Grzywalski T; Piecuch M; Szajek M; Bręborowicz A; Hafke-Dys H; Kociński J; Pastusiak A; Belluzzo R Eur J Pediatr; 2019 Jun; 178(6):883-890. PubMed ID: 30927097 [TBL] [Abstract][Full Text] [Related]
5. The use of spectrograms improves the classification of wheezes and crackles in an educational setting. Aviles-Solis JC; Storvoll I; Vanbelle S; Melbye H Sci Rep; 2020 May; 10(1):8461. PubMed ID: 32440001 [TBL] [Abstract][Full Text] [Related]
6. Characteristics of Pulmonary Auscultation in Patients with 2019 Novel Coronavirus in China. Wang B; Liu Y; Wang Y; Yin W; Liu T; Liu D; Li D; Feng M; Zhang Y; Liang Z; Fu Z; Fu S; Li W; Xiong N; Wang G; Luo F Respiration; 2020; 99(9):755-763. PubMed ID: 33147584 [TBL] [Abstract][Full Text] [Related]
7. [New classification and analysis of lung sounds]. Kikuchi K; Watanabe M; Hashizume T; Kawamura M; Kato R; Kobayashi K; Ishihara T Nihon Kyobu Geka Gakkai Zasshi; 1989 Dec; 37(12):2532-7. PubMed ID: 2625566 [TBL] [Abstract][Full Text] [Related]
8. Influence of observer preferences and auscultatory skill on the choice of terms to describe lung sounds: a survey of staff physicians, residents and medical students. Bohadana A; Azulai H; Jarjoui A; Kalak G; Izbicki G BMJ Open Respir Res; 2020 Mar; 7(1):. PubMed ID: 32220901 [TBL] [Abstract][Full Text] [Related]
9. Automated Lung Sound Classification Using a Hybrid CNN-LSTM Network and Focal Loss Function. Petmezas G; Cheimariotis GA; Stefanopoulos L; Rocha B; Paiva RP; Katsaggelos AK; Maglaveras N Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161977 [TBL] [Abstract][Full Text] [Related]
10. Comparing RCPs to physicians for the description of lung sounds: are we accurate and can we communicate? Wilkins RL; Dexter JR Respir Care; 1990 Oct; 35(10):969-76. PubMed ID: 10183419 [TBL] [Abstract][Full Text] [Related]
11. Lung sounds classification using convolutional neural networks. Bardou D; Zhang K; Ahmad SM Artif Intell Med; 2018 Jun; 88():58-69. PubMed ID: 29724435 [TBL] [Abstract][Full Text] [Related]
12. [A new medical education using a lung sound auscultation simulator called "Mr. Lung"]. Yoshii C; Anzai T; Yatera K; Kawajiri T; Nakashima Y; Kido M J UOEH; 2002 Sep; 24(3):249-55. PubMed ID: 12235955 [TBL] [Abstract][Full Text] [Related]
13. Computerized Respiratory Sounds Are a Reliable Marker in Subjects With COPD. Jácome C; Marques A Respir Care; 2015 Sep; 60(9):1264-75. PubMed ID: 25969514 [TBL] [Abstract][Full Text] [Related]
14. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks. Jayalakshmy S; Sudha GF Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805 [TBL] [Abstract][Full Text] [Related]
15. An automated computerized auscultation and diagnostic system for pulmonary diseases. Abbas A; Fahim A J Med Syst; 2010 Dec; 34(6):1149-55. PubMed ID: 20703592 [TBL] [Abstract][Full Text] [Related]
16. Classification of respiratory sounds based on wavelet packet decomposition and learning vector quantization. Pesu L; Helistö P; Ademovic E; Pesquet JC; Saarinen A; Sovijärvi AR Technol Health Care; 1998 Jun; 6(1):65-74. PubMed ID: 9754685 [TBL] [Abstract][Full Text] [Related]
17. Artificial Intelligence Approach to the Monitoring of Respiratory Sounds in Asthmatic Patients. Hafke-Dys H; Kuźnar-Kamińska B; Grzywalski T; Maciaszek A; Szarzyński K; Kociński J Front Physiol; 2021; 12():745635. PubMed ID: 34858203 [No Abstract] [Full Text] [Related]
18. Computerized respiratory sounds: a comparison between patients with stable and exacerbated COPD. Jácome C; Oliveira A; Marques A Clin Respir J; 2017 Sep; 11(5):612-620. PubMed ID: 26403859 [TBL] [Abstract][Full Text] [Related]
19. Wheezes, crackles and rhonchi: simplifying description of lung sounds increases the agreement on their classification: a study of 12 physicians' classification of lung sounds from video recordings. Melbye H; Garcia-Marcos L; Brand P; Everard M; Priftis K; Pasterkamp H BMJ Open Respir Res; 2016; 3(1):e000136. PubMed ID: 27158515 [TBL] [Abstract][Full Text] [Related]
20. Prevalence and clinical associations of wheezes and crackles in the general population: the Tromsø study. Aviles-Solis JC; Jácome C; Davidsen A; Einarsen R; Vanbelle S; Pasterkamp H; Melbye H BMC Pulm Med; 2019 Sep; 19(1):173. PubMed ID: 31511003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]