These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 34434140)

  • 1. Gaze Behavior During Navigation and Visual Search of an Open-World Virtual Environment.
    Enders LR; Smith RJ; Gordon SM; Ries AJ; Touryan J
    Front Psychol; 2021; 12():681042. PubMed ID: 34434140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of elevated situational awareness for active duty soldiers during navigation of a virtual environment.
    Enders LR; Gordon SM; Roy H; Rohaly T; Dalangin B; Jeter A; Villarreal J; Boykin GL; Touryan J
    PLoS One; 2024; 19(5):e0298867. PubMed ID: 38728266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A naturalistic viewing paradigm using 360° panoramic video clips and real-time field-of-view changes with eye-gaze tracking.
    Kim HC; Jin S; Jo S; Lee JH
    Neuroimage; 2020 Aug; 216():116617. PubMed ID: 32057996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eye movements in real and simulated driving and navigation control - Foreword to the Special Issue.
    Groner R; Kasneci E
    J Eye Mov Res; 2021 Jun; 12(3):. PubMed ID: 34122742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze behavior during navigation with reduced acuity.
    Freedman A; Achtemeier J; Baek Y; Legge GE
    Exp Eye Res; 2019 Jun; 183():20-28. PubMed ID: 30445049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From lab-based studies to eye-tracking in virtual and real worlds: conceptual and methodological problems and solutions. Symposium 4 at the 20th European Conference on Eye Movement Research (ECEM) in Alicante, 20.8.2019.
    Hooge ITC; Hessels RS; Niehorster DC; Diaz GJ; Duchowski AT; Pelz JB
    J Eye Mov Res; 2019 Nov; 12(7):. PubMed ID: 33828764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating neural and ocular attention reorienting signals in virtual reality.
    Lapborisuth P; Koorathota S; Wang Q; Sajda P
    J Neural Eng; 2022 Jan; 18(6):. PubMed ID: 34937017
    [No Abstract]   [Full Text] [Related]  

  • 9. Assessing visuospatial processing in cerebral visual impairment using a novel and naturalistic static visual search task.
    Zhang X; Manley CE; Micheletti S; Tesic I; Bennett CR; Fazzi EM; Merabet LB
    Res Dev Disabil; 2022 Dec; 131():104364. PubMed ID: 36334401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring Attentional Distraction in Children With ADHD Using Virtual Reality Technology With Eye-Tracking.
    Stokes JD; Rizzo A; Geng JJ; Schweitzer JB
    Front Virtual Real; 2022 Mar; 3():. PubMed ID: 35601272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Eye Tracking in Puzzle Games for Adjunct Cognitive Markers: Pilot Observational Study in Older Adults.
    Krebs C; Falkner M; Niklaus J; Persello L; Klöppel S; Nef T; Urwyler P
    JMIR Serious Games; 2021 Mar; 9(1):e24151. PubMed ID: 33749607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image complexity analysis with scanpath identification using remote gaze estimation model.
    Ishrat M; Abrol P
    Multimed Tools Appl; 2020; 79(33-34):24393-24412. PubMed ID: 32837248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing eye movement behaviors and kinematics of non-human primates during virtual navigation tasks.
    Corrigan BW; Gulli RA; Doucet G; Martinez-Trujillo JC
    J Vis; 2017 Oct; 17(12):15. PubMed ID: 29071352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active visual search in naturalistic environments reflects individual differences in classic visual search performance.
    Botch TL; Garcia BD; Choi YB; Feffer N; Robertson CE
    Sci Rep; 2023 Jan; 13(1):631. PubMed ID: 36635491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vestibular damage affects the precision and accuracy of navigation in a virtual visual environment.
    Chari DA; Ahmad M; King S; Boutabla A; Fattahi C; Panic AS; Karmali F; Lewis RF
    Brain Commun; 2023; 5(6):fcad345. PubMed ID: 38116141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of virtual reality system based on eye-tracking technologies to support clinical assessment of glaucoma.
    Martínez-Almeida Nistal I; Lampreave Acebes P; Martínez-de-la-Casa JM; Sánchez-González P
    Eur J Ophthalmol; 2021 Nov; 31(6):3080-3086. PubMed ID: 33233935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in gaze sampling strategies during obstacle navigation.
    Domínguez-Zamora FJ; Lajoie K; Miller AB; Marigold DS
    Gait Posture; 2020 Feb; 76():252-258. PubMed ID: 31877549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dynamics of Attention Shifts Among Concurrent Speech in a Naturalistic Multi-speaker Virtual Environment.
    Shavit-Cohen K; Zion Golumbic E
    Front Hum Neurosci; 2019; 13():386. PubMed ID: 31780911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating Search Among Physical and Virtual Objects Under Different Lighting Conditions.
    Kim YJ; Kumaran R; Sayyad E; Milner A; Bullock T; Giesbrecht B; Hollerer T
    IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3788-3798. PubMed ID: 36048996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye movement characteristics in a mental rotation task presented in virtual reality.
    Tang Z; Liu X; Huo H; Tang M; Qiao X; Chen D; Dong Y; Fan L; Wang J; Du X; Guo J; Tian S; Fan Y
    Front Neurosci; 2023; 17():1143006. PubMed ID: 37051147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.