BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34434252)

  • 1. Inverse Kinematics of Concentric Tube Robots in the Presence of Environmental Constraints.
    Jabari M; Zakeri M; Janabi-Sharifi F; Norouzi-Ghazbi S
    Appl Bionics Biomech; 2021; 2021():4107732. PubMed ID: 34434252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Concurrent Framework for Constrained Inverse Kinematics of Minimally Invasive Surgical Robots.
    Colan J; Davila A; Fozilov K; Hasegawa Y
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Extending Concentric Tube Robot Kinematics for Large Clearance and Impulse Curvature.
    Zhang Z; Shen J; Ha J; Chen Y
    IEEE Robot Autom Lett; 2024 Mar; 9(3):2407-2414. PubMed ID: 38912312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling Analysis of Compound Continuum Robots for Surgery: Another Line of Thought.
    Wei H; Zhang G; Wang S; Zhang P; Su J; Du F
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal Concentric Tube Robot Design for Safe Intracerebral Hemorrhage Removal.
    Huang Z; Alkhars H; Gunderman A; Sigounas D; Cleary K; Chen Y
    J Mech Robot; 2024 Aug; 16(8):. PubMed ID: 38434486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deeply-learnt damped least-squares (DL-DLS) method for inverse kinematics of snake-like robots.
    Omisore OM; Han S; Ren L; Elazab A; Hui L; Abdelhamid T; Azeez NA; Wang L
    Neural Netw; 2018 Nov; 107():34-47. PubMed ID: 30241968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast torsionally compliant kinematic model of concentric-tube robots.
    Xu R; Patel RV
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():904-7. PubMed ID: 23366039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Geometric Approach towards Inverse Kinematics of Soft Extensible Pneumatic Actuators Intended for Trajectory Tracking.
    Keyvanara M; Goshtasbi A; Kuling IA
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating exploration for deep reinforcement learning of concentric tube robot control.
    Iyengar K; Dwyer G; Stoyanov D
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1157-1165. PubMed ID: 32506349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design Optimization of Concentric Tube Robots Based on Task and Anatomical Constraints.
    Bedell C; Lock J; Gosline A; Dupont PE
    IEEE Int Conf Robot Autom; 2011 May; 2011():398-403. PubMed ID: 22229108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentric Tube Robot Design and Optimization Based on Task and Anatomical Constraints.
    Bergeles C; Gosline AH; Vasilyev NV; Codd PJ; Del Nido PJ; Dupont PE
    IEEE Trans Robot; 2015 Feb; 31(1):67-84. PubMed ID: 26380575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a multi-arm concentric-tube robot system for transnasal surgery.
    Wang J; Yang X; Li P; Song S; Liu L; Meng MQ
    Med Biol Eng Comput; 2020 Mar; 58(3):497-508. PubMed ID: 31900817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Motion Planning Approach to Automatic Obstacle Avoidance during Concentric Tube Robot Teleoperation.
    Torres LG; Kuntz A; Gilbert HB; Swaney PJ; Hendrick RJ; Webster RJ; Alterovitz R
    IEEE Int Conf Robot Autom; 2015 May; 2015():2361-2367. PubMed ID: 26413381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Dynamic Model for Concentric Tube Robots.
    Till J; Aloi V; Riojas KE; Anderson PL; Webster RJ; Rucker C
    IEEE Trans Robot; 2020 Dec; 36(6):1704-1718. PubMed ID: 33603591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebellum-inspired neural network solution of the inverse kinematics problem.
    Asadi-Eydivand M; Ebadzadeh MM; Solati-Hashjin M; Darlot C; Abu Osman NA
    Biol Cybern; 2015 Dec; 109(6):561-74. PubMed ID: 26438095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of and Experimenting with Concentric Tube Robots: Considering Clearance, Friction and Torsion.
    Liu T; Zhang G; Zhang P; Cheng T; Luo Z; Wang S; Du F
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentric Tube Robot Redundancy Resolution via Velocity/Compliance Manipulability Optimization.
    Shen J; Wang Y; Azizkhani M; Qiu D; Chen Y
    IEEE Robot Autom Lett; 2023 Nov; 8(11):7495-7502. PubMed ID: 37873043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Shape Estimation for Concentric Tube Continuum Robots with a Single Force/Torque Sensor.
    Donat H; Gu J; Steil JJ
    Front Robot AI; 2021; 8():734033. PubMed ID: 34671648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a compact continuum tubular robotic system for nasopharyngeal biopsy.
    Wu L; Song S; Wu K; Lim CM; Ren H
    Med Biol Eng Comput; 2017 Mar; 55(3):403-417. PubMed ID: 27230499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.