These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34434623)

  • 41. High correlation between 2 flow cytometry platforms in the microparticles analysis using a new calibrated beads strategy.
    Sánchez-López V; Vila-Liante V; Arellano-Orden E; Elías-Hernández T; Ramón-Nuñez LA; Jara-Palomares L; Martínez-Sales V; Gao L; Otero-Candelera R
    Transl Res; 2015 Dec; 166(6):733-9. PubMed ID: 26342453
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiplexed microsphere-based flow cytometric assays.
    Kellar KL; Iannone MA
    Exp Hematol; 2002 Nov; 30(11):1227-37. PubMed ID: 12423675
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of an automated fluorescent microsphere method to measure regional blood flow in the fetal lamb.
    Tan W; Riggs KW; Thies RL; Rurak DW
    Can J Physiol Pharmacol; 1997 Aug; 75(8):959-68. PubMed ID: 9360009
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sources of Variability in the Response of Labeled Microspheres and B Cells during the Analysis by a Flow Cytometer.
    Gaigalas AK; Zhang YZ; Tian L; Wang L
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34361020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A method for calibration of flow cytometric wavelength shift fluorescence measurements.
    Kachel V; Kempski O; Peters J; Schödel F
    Cytometry; 1990; 11(8):913-5. PubMed ID: 2272252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FACSCanto II and LSRFortessa flow cytometer instruments can be synchronized utilizing single-fluorochrome-conjugated surface-dyed beads for standardized immunophenotyping.
    Cornel AM; van der Burght CAJ; Nierkens S; van Velzen JF
    J Clin Lab Anal; 2020 Sep; 34(9):e23361. PubMed ID: 32430992
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A non-biological surrogate for sequential disinfection processes.
    Baeza C; Ducoste J
    Water Res; 2004; 38(14-15):3400-10. PubMed ID: 15276757
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Standardization of extracellular vesicle concentration measurements by flow cytometry: the past, present, and future.
    Bettin BA; Varga Z; Nieuwland R; van der Pol E
    J Thromb Haemost; 2023 Aug; 21(8):2032-2044. PubMed ID: 37201724
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular calibration in flow cytometry with sub-attogram detection limit.
    Watson JV; Walport MJ
    J Immunol Methods; 1986 Nov; 93(2):171-5. PubMed ID: 3095432
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multi-wavelength microflow cytometer using groove-generated sheath flow.
    Golden JP; Kim JS; Erickson JS; Hilliard LR; Howell PB; Anderson GP; Nasir M; Ligler FS
    Lab Chip; 2009 Jul; 9(13):1942-50. PubMed ID: 19532970
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Further developments of a microscope-based flow cytometer: light scatter detection and excitation intensity compensation.
    Steen HB
    Cytometry; 1980 Jul; 1(1):26-31. PubMed ID: 7273962
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres.
    Du Le VN; Nie Z; Hayward JE; Farrell TJ; Fang Q
    Biomed Opt Express; 2014 Aug; 5(8):2726-35. PubMed ID: 25136497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting the net administered activity in
    Henry EC; Lopez B; Mahvash A; Thomas MA; Kappadath SC
    Med Phys; 2023 Nov; 50(11):7003-7015. PubMed ID: 37272198
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization, detection, and counting of metal nanoparticles using flow cytometry.
    Zucker RM; Ortenzio JN; Boyes WK
    Cytometry A; 2016 Feb; 89(2):169-83. PubMed ID: 26619039
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescence lifetime excitation cytometry by kinetic dithering.
    Li W; Vacca G; Castillo M; Houston KD; Houston JP
    Electrophoresis; 2014 Jul; 35(12-13):1846-54. PubMed ID: 24668857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiplexed, particle-based detection of DNA using flow cytometry with 3DNA dendrimers for signal amplification.
    Lowe M; Spiro A; Zhang YZ; Getts R
    Cytometry A; 2004 Aug; 60(2):135-44. PubMed ID: 15290714
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visible and near infrared fluorescence spectral flow cytometry.
    Nolan JP; Condello D; Duggan E; Naivar M; Novo D
    Cytometry A; 2013 Mar; 83(3):253-64. PubMed ID: 23225549
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new standard fluorescence microsphere for quantitative flow cytometry.
    Oonishi T; Uyesaka N
    J Immunol Methods; 1985 Nov; 84(1-2):143-54. PubMed ID: 3934282
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determination of individual microsphere properties by capillary electrophoresis with laser-induced fluorescence detection.
    Duffy CF; McEathron AA; Arriaga EA
    Electrophoresis; 2002 Jul; 23(13):2040-7. PubMed ID: 12210257
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Typing of multiple single-nucleotide polymorphisms by a microsphere-based rolling circle amplification assay.
    Li J; Zhong W
    Anal Chem; 2007 Dec; 79(23):9030-8. PubMed ID: 17973502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.