BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34434795)

  • 1. Functionalization of clay surface for the removal of uranium from water.
    Bao L; Guo F; Wang H; Larson SL; Ballard JH; Knotek-Smith HM; Zhang Q; Nie J; Celik A; Islam SM; Dasari S; Zhang N; Han F
    MethodsX; 2021; 8():101275. PubMed ID: 34434795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clay minerals/sodium alginate/polyethylene hydrogel adsorbents control the selective adsorption and reduction of uranium: Experimental optimization and Monte Carlo simulation study.
    Yang J; Nie J; Bian L; Zhang J; Song M; Wang F; Lv G; Zeng L; Gu X; Xie X; Zhang P; Song Q
    J Hazard Mater; 2024 Apr; 468():133725. PubMed ID: 38401209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review.
    Hacıosmanoğlu GG; Mejías C; Martín J; Santos JL; Aparicio I; Alonso E
    J Environ Manage; 2022 Sep; 317():115397. PubMed ID: 35660825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model.
    Reinoso-Maset E; Ly J
    J Environ Radioact; 2016 Jun; 157():136-48. PubMed ID: 27077702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay.
    Anirudhan TS; Bringle CD; Rijith S
    J Environ Radioact; 2010 Mar; 101(3):267-76. PubMed ID: 20045229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.
    Szecsody JE; Truex MJ; Qafoku NP; Wellman DM; Resch T; Zhong L
    J Contam Hydrol; 2013 Aug; 151():155-75. PubMed ID: 23851265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of surface complexation modeling on adsorption of uranium at water-solid interface: A review.
    Sun Y; Li Y
    Environ Pollut; 2021 Jun; 278():116861. PubMed ID: 33714063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uranium removal from aqueous solution using macauba endocarp-derived biochar: Effect of physical activation.
    Guilhen SN; Rovani S; Araujo LG; Tenório JAS; Mašek O
    Environ Pollut; 2021 Mar; 272():116022. PubMed ID: 33221084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead removal from aqueous solutions by a Tunisian smectitic clay.
    Chaari I; Fakhfakh E; Chakroun S; Bouzid J; Boujelben N; Feki M; Rocha F; Jamoussi F
    J Hazard Mater; 2008 Aug; 156(1-3):545-51. PubMed ID: 18243536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations.
    Greathouse JA; Cygan RT
    Environ Sci Technol; 2006 Jun; 40(12):3865-71. PubMed ID: 16830554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms.
    Alam MS; Cheng T
    J Contam Hydrol; 2014 Aug; 164():72-87. PubMed ID: 24954631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Cd, Cu and Zn ions from aqueous solutions using natural and Fe modified sepiolite, zeolite and palygorskite clay minerals.
    Bahabadi FN; Farpoor MH; Mehrizi MH
    Water Sci Technol; 2017 Jan; 75(2):340-349. PubMed ID: 28112661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption Study for the Removal of Nitrate from Water Using Local Clay.
    Battas A; Gaidoumi AE; Ksakas A; Kherbeche A
    ScientificWorldJournal; 2019; 2019():9529618. PubMed ID: 30853867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zirconium-modified natural clays for phosphate removal: Effect of clay minerals.
    Huo J; Min X; Wang Y
    Environ Res; 2021 Mar; 194():110685. PubMed ID: 33428913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytic acid-doped polyaniline nanofibers-clay mineral for efficient adsorption of copper (II) ions.
    Ben Ali M; Wang F; Boukherroub R; Lei W; Xia M
    J Colloid Interface Sci; 2019 Oct; 553():688-698. PubMed ID: 31252185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure.
    Zhou W; Ren L; Zhu L
    Environ Pollut; 2017 Apr; 223():247-254. PubMed ID: 28108163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized hydrogen-bonded organic superstructures via molecular self-assembly for enhanced uranium extraction.
    Liu Y; Ni S; Wang W; Rong M; Cai H; Xing H; Yang L
    J Hazard Mater; 2024 Feb; 464():133002. PubMed ID: 37988939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural clays with an inherent uranium component that nevertheless sequester uranium from contaminated water.
    Lara A; Rivera E; Ho Park Y; Rivera R; Fowler T; Jones J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(2):101-109. PubMed ID: 30407104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of clay minerals and organic matter in formulated sediments on the bioavailability of sediment-associated uranium to the freshwater midge, Chironomus dilutus.
    Crawford SE; Liber K
    Sci Total Environ; 2015 Nov; 532():821-30. PubMed ID: 26205073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined Effects of Fe(III)-Bearing Clay Minerals and Organic Ligands on U(VI) Bioreduction and U(IV) Speciation.
    Zhang L; Chen Y; Xia Q; Kemner KM; Shen Y; O'Loughlin EJ; Pan Z; Wang Q; Huang Y; Dong H; Boyanov MI
    Environ Sci Technol; 2021 May; 55(9):5929-5938. PubMed ID: 33822593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.