These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34434967)

  • 21. Dynamic Navigation and Area Assignment of Multiple USVs Based on Multi-Agent Deep Reinforcement Learning.
    Wen J; Liu S; Lin Y
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactive navigation under a fuzzy rules-based scheme and reinforcement learning for mobile robots.
    López-Lozada E; Rubio-Espino E; Sossa-Azuela JH; Ponce-Ponce VH
    PeerJ Comput Sci; 2021; 7():e556. PubMed ID: 34150998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Representation in natural and artificial agents: an embodied cognitive science perspective.
    Pfeifer R; Scheier C
    Z Naturforsch C J Biosci; 1998; 53(7-8):480-503. PubMed ID: 9755508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scalable and Transferable Reinforcement Learning for Multi-Agent Mixed Cooperative-Competitive Environments Based on Hierarchical Graph Attention.
    Chen Y; Song G; Ye Z; Jiang X
    Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human-machine-human interaction in motor control and rehabilitation: a review.
    Küçüktabak EB; Kim SJ; Wen Y; Lynch K; Pons JL
    J Neuroeng Rehabil; 2021 Dec; 18(1):183. PubMed ID: 34961530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generalize Robot Learning From Demonstration to Variant Scenarios With Evolutionary Policy Gradient.
    Cao J; Liu W; Liu Y; Yang J
    Front Neurorobot; 2020; 14():21. PubMed ID: 32372940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments.
    Doukhi O; Lee DJ
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Needs, Pains, and Motivations in Autonomous Agents.
    Starzyk JA; Graham J; Puzio L
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2528-2540. PubMed ID: 27542184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robot grasping method optimization using improved deep deterministic policy gradient algorithm of deep reinforcement learning.
    Zhang H; Wang F; Wang J; Cui B
    Rev Sci Instrum; 2021 Feb; 92(2):025114. PubMed ID: 33648152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Grandmaster level in StarCraft II using multi-agent reinforcement learning.
    Vinyals O; Babuschkin I; Czarnecki WM; Mathieu M; Dudzik A; Chung J; Choi DH; Powell R; Ewalds T; Georgiev P; Oh J; Horgan D; Kroiss M; Danihelka I; Huang A; Sifre L; Cai T; Agapiou JP; Jaderberg M; Vezhnevets AS; Leblond R; Pohlen T; Dalibard V; Budden D; Sulsky Y; Molloy J; Paine TL; Gulcehre C; Wang Z; Pfaff T; Wu Y; Ring R; Yogatama D; Wünsch D; McKinney K; Smith O; Schaul T; Lillicrap T; Kavukcuoglu K; Hassabis D; Apps C; Silver D
    Nature; 2019 Nov; 575(7782):350-354. PubMed ID: 31666705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast reinforcement learning with generalized policy updates.
    Barreto A; Hou S; Borsa D; Silver D; Precup D
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30079-30087. PubMed ID: 32817541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Knowledge Reuse of Multi-Agent Reinforcement Learning in Cooperative Tasks.
    Shi D; Tong J; Liu Y; Fan W
    Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reinforcement-Learning-Based Route Generation for Heavy-Traffic Autonomous Mobile Robot Systems.
    Kozjek D; Malus A; Vrabič R
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300548
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.