These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34434967)

  • 41. Interacting With Robots to Investigate the Bases of Social Interaction.
    Sciutti A; Sandini G
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2295-2304. PubMed ID: 29035218
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Learning to Cooperate via an Attention-Based Communication Neural Network in Decentralized Multi-Robot Exploration.
    Geng M; Xu K; Zhou X; Ding B; Wang H; Zhang L
    Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33267009
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stage-Wise Learning of Reaching Using Little Prior Knowledge.
    de La Bourdonnaye F; Teulière C; Triesch J; Chateau T
    Front Robot AI; 2018; 5():110. PubMed ID: 33500989
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unravelling socio-motor biomarkers in schizophrenia.
    Słowiński P; Alderisio F; Zhai C; Shen Y; Tino P; Bortolon C; Capdevielle D; Cohen L; Khoramshahi M; Billard A; Salesse R; Gueugnon M; Marin L; Bardy BG; di Bernardo M; Raffard S; Tsaneva-Atanasova K
    NPJ Schizophr; 2017; 3():8. PubMed ID: 28560254
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visual appearance modulates motor control in social interactions.
    de la Rosa S; Meilinger T; Streuber S; Saulton A; Fademrecht L; Quiros-Ramirez MA; Bülthoff H; Bülthoff I; Cañal-Bruland R
    Acta Psychol (Amst); 2020 Oct; 210():103168. PubMed ID: 32919093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Learning of Central Pattern Generator Coordination in Robot Drawing.
    Atoofi P; Hamker FH; Nassour J
    Front Neurorobot; 2018; 12():44. PubMed ID: 30083100
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling of autonomous problem solving process by dynamic construction of task models in multiple tasks environment.
    Ohigashi Y; Omori T
    Neural Netw; 2006 Oct; 19(8):1169-80. PubMed ID: 16989982
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning.
    Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H
    IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The discontinuous nature of motor execution II. Merging discrete and rhythmic movements in a single-joint system -- the phase entrainment effect.
    Staude G; Dengler R; Wolf W
    Biol Cybern; 2002 Jun; 86(6):427-43. PubMed ID: 12111272
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The dynamic neural field approach to cognitive robotics.
    Erlhagen W; Bicho E
    J Neural Eng; 2006 Sep; 3(3):R36-54. PubMed ID: 16921201
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reinforcement Learning for Improving Agent Design.
    Ha D
    Artif Life; 2019; 25(4):352-365. PubMed ID: 31697584
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Learning alternative movement coordination patterns using reinforcement feedback.
    Lin TH; Denomme A; Ranganathan R
    Exp Brain Res; 2018 May; 236(5):1395-1407. PubMed ID: 29536148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Autonomous Shepherding Behaviors of Multiple Target Steering Robots.
    Lee W; Kim D
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The acquisition of socio-motor improvisation in the mirror game.
    Gueugnon M; Salesse RN; Coste A; Zhao Z; Bardy BG; Marin L
    Hum Mov Sci; 2016 Apr; 46():117-28. PubMed ID: 26741257
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Hybrid MPC for Constrained Deep Reinforcement Learning applied for Planar Robotic Arm.
    Al-Gabalawy M
    ISA Trans; 2021 Apr; ():. PubMed ID: 33845995
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple processes independently predict motor learning.
    Perry CM; Singh T; Springer KG; Harrison AT; McLain AC; Herter TM
    J Neuroeng Rehabil; 2020 Nov; 17(1):151. PubMed ID: 33203416
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pragmatically Framed Cross-Situational Noun Learning Using Computational Reinforcement Models.
    Najnin S; Banerjee B
    Front Psychol; 2018; 9():5. PubMed ID: 29441027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.