These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34435161)

  • 1. Stereodynamics of
    Corra S; de Vet C; Baroncini M; Credi A; Silvi S
    Chem; 2021 Aug; 7(8):2137-2150. PubMed ID: 34435161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The End of the Beginning of Mechanical Stereochemistry.
    Goldup SM
    Acc Chem Res; 2024 Jun; 57(12):1696-1708. PubMed ID: 38830116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-assembly processing of [2]rotaxanes.
    Chiu SH; Rowan SJ; Cantrill SJ; Stoddart JF; White AJ; Williams DJ
    Chemistry; 2002 Nov; 8(22):5170-83. PubMed ID: 12613035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using photoresponsive end-closing and end-opening reactions for the synthesis and disassembly of [2]rotaxanes: implications for dynamic covalent chemistry.
    Tokunaga Y; Akasaka K; Hashimoto N; Yamanaka S; Hisada K; Shimomura Y; Kakuchi S
    J Org Chem; 2009 Mar; 74(6):2374-9. PubMed ID: 19222247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isomerization mechanism in hydrazone-based rotary switches: lateral shift, rotation, or tautomerization?
    Landge SM; Tkatchouk E; Benítez D; Lanfranchi DA; Elhabiri M; Goddard WA; Aprahamian I
    J Am Chem Soc; 2011 Jun; 133(25):9812-23. PubMed ID: 21585197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of a Mechanically Planar Chiral Rotaxane Ligand for Enantioselective Catalysis.
    Heard AW; Goldup SM
    Chem; 2020 Apr; 6(4):994-1006. PubMed ID: 32309674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two Independent Orthogonal Stereomutations at a Single Asymmetric Center: A Narcissistic Couple.
    Gillick-Healy MW; Jennings EV; Müller-Bunz H; Ortin Y; Nikitin K; Gilheany DG
    Chemistry; 2017 Feb; 23(10):2332-2339. PubMed ID: 27779793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The lubricating role of water in the shuttling of rotaxanes.
    Fu H; Shao X; Chipot C; Cai W
    Chem Sci; 2017 Jul; 8(7):5087-5094. PubMed ID: 28970894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective Synthesis of Mechanically Planar Chiral Rotaxanes.
    Jinks MA; de Juan A; Denis M; Fletcher CJ; Galli M; Jamieson EMG; Modicom F; Zhang Z; Goldup SM
    Angew Chem Int Ed Engl; 2018 Nov; 57(45):14806-14810. PubMed ID: 30253008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ring-through-ring molecular shuttling in a saturated [3]rotaxane.
    Zhu K; Baggi G; Loeb SJ
    Nat Chem; 2018 Jun; 10(6):625-630. PubMed ID: 29713030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative conformational study of redox-active [2]rotaxanes, part 2: Switching in flexible and rigid bistable [2]rotaxanes.
    Nikitin K; Lestini E; Stolarczyk JK; Müller-Bunz H; Fitzmaurice D
    Chemistry; 2008; 14(4):1117-28. PubMed ID: 18041797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating the Shuttling in Hydrogen-Bonded Rotaxanes: Active Role of the Axle and the End Station.
    Kumpulainen T; Panman MR; Bakker BH; Hilbers M; Woutersen S; Brouwer AM
    J Am Chem Soc; 2019 Dec; 141(48):19118-19129. PubMed ID: 31697078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active metal template synthesis of rotaxanes, catenanes and molecular shuttles.
    Crowley JD; Goldup SM; Lee AL; Leigh DA; McBurney RT
    Chem Soc Rev; 2009 Jun; 38(6):1530-41. PubMed ID: 19587949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The true nature of rotary movements in rotaxanes.
    Liu P; Shao X; Chipot C; Cai W
    Chem Sci; 2016 Jan; 7(1):457-462. PubMed ID: 30155010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced Autonomous Nonequilibrium Operation of a Molecular Shuttle by Combined Isomerization and Proton Transfer Through a Catalytic Pathway.
    Nicoli F; Curcio M; Tranfić Bakić M; Paltrinieri E; Silvi S; Baroncini M; Credi A
    J Am Chem Soc; 2022 Jun; 144(23):10180-10185. PubMed ID: 35575701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shuttling dynamics in an acid-base-switchable [2]rotaxane.
    Garaudée S; Silvi S; Venturi M; Credi A; Flood AH; Stoddart JF
    Chemphyschem; 2005 Oct; 6(10):2145-52. PubMed ID: 16208757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplification of integrated microscopic motions of high-density [2]rotaxanes in mechanically interlocked networks.
    Yang X; Cheng L; Zhang Z; Zhao J; Bai R; Guo Z; Yu W; Yan X
    Nat Commun; 2022 Nov; 13(1):6654. PubMed ID: 36333320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule.
    Mena-Hernando S; Pérez EM
    Chem Soc Rev; 2019 Oct; 48(19):5016-5032. PubMed ID: 31418435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality in rotaxanes and catenanes.
    Jamieson EMG; Modicom F; Goldup SM
    Chem Soc Rev; 2018 Jul; 47(14):5266-5311. PubMed ID: 29796501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition-metal-complexed catenanes and rotaxanes: from dynamic systems to functional molecular machines.
    Durot S; Heitz V; Sour A; Sauvage JP
    Top Curr Chem; 2014; 354():35-70. PubMed ID: 24563013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.