BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 34435370)

  • 21. The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges.
    Eş I; Gavahian M; Marti-Quijal FJ; Lorenzo JM; Mousavi Khaneghah A; Tsatsanis C; Kampranis SC; Barba FJ
    Biotechnol Adv; 2019; 37(3):410-421. PubMed ID: 30779952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of genome editing techniques to regulate gene expression in crops.
    Dong H
    BMC Plant Biol; 2024 Feb; 24(1):100. PubMed ID: 38331711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis.
    Adeyinka OS; Tabassum B; Koloko BL; Ogungbe IV
    Planta; 2023 Mar; 257(4):78. PubMed ID: 36913066
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The economics and policy of genome editing in crop improvement.
    Kalaitzandonakes N; Willig C; Zahringer K
    Plant Genome; 2023 Jun; 16(2):e20248. PubMed ID: 36321718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA-free genome editing methods for targeted crop improvement.
    Kanchiswamy CN
    Plant Cell Rep; 2016 Jul; 35(7):1469-74. PubMed ID: 27100964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing.
    Kausch AP; Nelson-Vasilchik K; Hague J; Mookkan M; Quemada H; Dellaporta S; Fragoso C; Zhang ZJ
    Plant Sci; 2019 Apr; 281():186-205. PubMed ID: 30824051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes.
    Tay Fernandez CG; Nestor BJ; Danilevicz MF; Marsh JI; Petereit J; Bayer PE; Batley J; Edwards D
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome editing in cereal crops: an overview.
    Matres JM; Hilscher J; Datta A; Armario-Nájera V; Baysal C; He W; Huang X; Zhu C; Valizadeh-Kamran R; Trijatmiko KR; Capell T; Christou P; Stoger E; Slamet-Loedin IH
    Transgenic Res; 2021 Aug; 30(4):461-498. PubMed ID: 34263445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome editing of crops: A renewed opportunity for food security.
    Georges F; Ray H
    GM Crops Food; 2017 Jan; 8(1):1-12. PubMed ID: 28075688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome engineering for crop improvement and future agriculture.
    Gao C
    Cell; 2021 Mar; 184(6):1621-1635. PubMed ID: 33581057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tailoring crops with superior product quality through genome editing: an update.
    Ravikiran KT; Thribhuvan R; Sheoran S; Kumar S; Kushwaha AK; Vineeth TV; Saini M
    Planta; 2023 Mar; 257(5):86. PubMed ID: 36949234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives.
    Ahmar S; Hensel G; Gruszka D
    Biotechnol Adv; 2023 Dec; 69():108248. PubMed ID: 37666372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome engineering and plant breeding: impact on trait discovery and development.
    Nogué F; Mara K; Collonnier C; Casacuberta JM
    Plant Cell Rep; 2016 Jul; 35(7):1475-86. PubMed ID: 27193593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutagenesis-based plant breeding approaches and genome engineering: A review focused on tomato.
    Shahwar D; Ahn N; Kim D; Ahn W; Park Y
    Mutat Res Rev Mutat Res; 2023; 792():108473. PubMed ID: 37716439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Putting CRISPR-Cas system in action: a golden window for efficient and precise genome editing for crop improvement.
    Tariq A; Mushtaq M; Yaqoob H; Bhat BA; Zargar SM; Raza A; Ali S; Charagh S; Mubarik MS; Zaman QU; Prasad PV; Mir RA
    GM Crops Food; 2023 Dec; 14(1):1-27. PubMed ID: 37288976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives.
    Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY
    Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected
    Barka GD; Lee J
    Bioengineered; 2022 Jun; 13(6):14646-14666. PubMed ID: 35891620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition.
    Kaul T; Sony SK; Verma R; Motelb KFA; Prakash AT; Eswaran M; Bharti J; Nehra M; Kaul R
    J Biosci; 2020; 45():. PubMed ID: 33361628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Cas9 Application in Canadian Public and Private Plant Breeding.
    Gleim S; Lubieniechi S; Smyth SJ
    CRISPR J; 2020 Feb; 3(1):44-51. PubMed ID: 32091256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.