These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34435449)

  • 1. Importance of Path Planning Variability: A Simulation Study.
    Krichmar JL; He C
    Top Cogn Sci; 2023 Jan; 15(1):139-162. PubMed ID: 34435449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Humans account for cognitive costs when finding shortcuts: An information-theoretic analysis of navigation.
    Lancia GL; Eluchans M; D'Alessandro M; Spiers HJ; Pezzulo G
    PLoS Comput Biol; 2023 Jan; 19(1):e1010829. PubMed ID: 36608145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instructions matter: Individual differences in navigation strategy and ability.
    Boone AP; Maghen B; Hegarty M
    Mem Cognit; 2019 Oct; 47(7):1401-1414. PubMed ID: 31102190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End-to-End One-Shot Path-Planning Algorithm for an Autonomous Vehicle Based on a Convolutional Neural Network Considering Traversability Cost.
    Bian T; Xing Y; Zolotas A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognitive Path Planning With Spatial Memory Distortion.
    Dubey RK; Sohn SS; Thrash T; Holscher C; Borrmann A; Kapadia M
    IEEE Trans Vis Comput Graph; 2023 Aug; 29(8):3535-3549. PubMed ID: 35358048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wormholes in virtual space: From cognitive maps to cognitive graphs.
    Warren WH; Rothman DB; Schnapp BH; Ericson JD
    Cognition; 2017 Sep; 166():152-163. PubMed ID: 28577445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Path-finding in real and simulated rats: assessing the influence of path characteristics on navigation learning.
    Tamosiunaite M; Ainge J; Kulvicius T; Porr B; Dudchenko P; Wörgötter F
    J Comput Neurosci; 2008 Dec; 25(3):562-82. PubMed ID: 18446432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Shared Working Space of Human and Robotic Agents Through Dipole Flow Field for Dependable Path Planning.
    Trinh LA; Ekström M; Cürüklü B
    Front Neurorobot; 2018; 12():28. PubMed ID: 29928198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive maps in the wild: revealing the use of metric information in black howler monkey route navigation.
    de Guinea M; Estrada A; Nekaris KA; Van Belle S
    J Exp Biol; 2021 Aug; 224(15):. PubMed ID: 34384101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Object-Based Reliable Visual Navigation for Mobile Robot.
    Wang F; Zhang C; Zhang W; Fang C; Xia Y; Liu Y; Dong H
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts.
    Foo P; Warren WH; Duchon A; Tarr MJ
    J Exp Psychol Learn Mem Cogn; 2005 Mar; 31(2):195-215. PubMed ID: 15755239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive maps in rats and humans for spatial navigation.
    de Cothi W; Nyberg N; Griesbauer EM; Ghanamé C; Zisch F; Lefort JM; Fletcher L; Newton C; Renaudineau S; Bendor D; Grieves R; Duvelle É; Barry C; Spiers HJ
    Curr Biol; 2022 Sep; 32(17):3676-3689.e5. PubMed ID: 35863351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hierarchical model of goal directed navigation selects trajectories in a visual environment.
    Erdem UM; Milford MJ; Hasselmo ME
    Neurobiol Learn Mem; 2015 Jan; 117():109-21. PubMed ID: 25079451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Path planning for autonomous mobile robots using multi-objective evolutionary particle swarm optimization.
    Thammachantuek I; Ketcham M
    PLoS One; 2022; 17(8):e0271924. PubMed ID: 35984778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Path-Planning Approach Based on Potential and Dynamic Q-Learning for Mobile Robots in Unknown Environment.
    Hao B; Du H; Zhao J; Zhang J; Wang Q
    Comput Intell Neurosci; 2022; 2022():2540546. PubMed ID: 35694567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grid-Based Mobile Robot Path Planning Using Aging-Based Ant Colony Optimization Algorithm in Static and Dynamic Environments.
    Ajeil FH; Ibraheem IK; Azar AT; Humaidi AJ
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32231091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Occupancy Mapping Framework for Risk-Aware Path Planning in Unstructured Environments.
    Laconte J; Kasmi A; Pomerleau F; Chapuis R; Malaterre L; Debain C; Aufrère R
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and production of robot trajectories using the Temporal Parametrized Self Organizing Maps.
    Padoan Junior AC; De A Barreto G; Araújo AF
    Int J Neural Syst; 2003 Apr; 13(2):119-27. PubMed ID: 12923925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.