These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34435454)

  • 1. Process of energy conservation in the extremely haloalkaliphilic methyl-reducing methanogen Methanonatronarchaeum thermophilum.
    Steiniger F; Sorokin DY; Deppenmeier U
    FEBS J; 2022 Jan; 289(2):549-563. PubMed ID: 34435454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.
    Costa KC; Wong PM; Wang T; Lie TJ; Dodsworth JA; Swanson I; Burn JA; Hackett M; Leigh JA
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11050-5. PubMed ID: 20534465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of membrane-bound electron transport of the methanogenic archaeon Methanosarcina mazei Gö1 by diphenyleneiodonium.
    Brodersen J; Bäumer S; Abken HJ; Gottschalk G; Deppenmeier U
    Eur J Biochem; 1999 Jan; 259(1-2):218-24. PubMed ID: 9914496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methanonatronarchaeum thermophilum gen. nov., sp. nov. and 'Candidatus Methanohalarchaeum thermophilum', extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov.
    Sorokin DY; Merkel AY; Abbas B; Makarova KS; Rijpstra WIC; Koenen M; Sinninghe Damsté JS; Galinski EA; Koonin EV; van Loosdrecht MCM
    Int J Syst Evol Microbiol; 2018 Jul; 68(7):2199-2208. PubMed ID: 29781801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Several ways one goal-methanogenesis from unconventional substrates.
    Kurth JM; Op den Camp HJM; Welte CU
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6839-6854. PubMed ID: 32542472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy Conservation and Hydrogenase Function in Methanogenic Archaea, in Particular the Genus
    Mand TD; Metcalf WW
    Microbiol Mol Biol Rev; 2019 Nov; 83(4):. PubMed ID: 31533962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of a rice paddy soil methanogen to syntrophic growth as revealed by transcriptional analyses.
    Liu P; Yang Y; Lü Z; Lu Y
    Appl Environ Microbiol; 2014 Aug; 80(15):4668-76. PubMed ID: 24837392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis.
    Sorokin DY; Makarova KS; Abbas B; Ferrer M; Golyshin PN; Galinski EA; Ciordia S; Mena MC; Merkel AY; Wolf YI; van Loosdrecht MCM; Koonin EV
    Nat Microbiol; 2017 May; 2():17081. PubMed ID: 28555626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The F420H2:heterodisulfide oxidoreductase system from Methanosarcina species. 2-Hydroxyphenazine mediates electron transfer from F420H2 dehydrogenase to heterodisulfide reductase.
    Bäumer S; Murakami E; Brodersen J; Gottschalk G; Ragsdale SW; Deppenmeier U
    FEBS Lett; 1998 May; 428(3):295-8. PubMed ID: 9654152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis.
    Costa KC; Lie TJ; Xia Q; Leigh JA
    J Bacteriol; 2013 Nov; 195(22):5160-5. PubMed ID: 24039260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1.
    Abken HJ; Tietze M; Brodersen J; Bäumer S; Beifuss U; Deppenmeier U
    J Bacteriol; 1998 Apr; 180(8):2027-32. PubMed ID: 9555882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens.
    Welte C; Deppenmeier U
    Biochim Biophys Acta; 2014 Jul; 1837(7):1130-47. PubMed ID: 24333786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bioenergetics of methanogenesis.
    Daniels L; Sparling R; Sprott GD
    Biochim Biophys Acta; 1984 Sep; 768(2):113-63. PubMed ID: 6236847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton translocation in methanogens.
    Welte C; Deppenmeier U
    Methods Enzymol; 2011; 494():257-80. PubMed ID: 21402219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The novel regulator HdrR controls the transcription of the heterodisulfide reductase operon
    Zhang S; Chen Y; Wang S; Yang Q; Leng H; Zhao P; Guo L; Dai L; Bai L; Cha G
    Appl Environ Microbiol; 2024 Jun; 90(6):e0069124. PubMed ID: 38809047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel reactions involved in energy conservation by methanogenic archaea.
    Deppenmeier U; Lienard T; Gottschalk G
    FEBS Lett; 1999 Sep; 457(3):291-7. PubMed ID: 10471795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of formate dehydrogenase activity in Methanococcus thermolithotrophicus.
    Sparling R; Daniels L
    J Bacteriol; 1990 Mar; 172(3):1464-9. PubMed ID: 2106511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy conservation in the gut microbe Methanomassiliicoccus luminyensis is based on membrane-bound ferredoxin oxidation coupled to heterodisulfide reduction.
    Kröninger L; Steiniger F; Berger S; Kraus S; Welte CU; Deppenmeier U
    FEBS J; 2019 Oct; 286(19):3831-3843. PubMed ID: 31162794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Gö1: identification of two proton-translocating segments.
    Ide T; Bäumer S; Deppenmeier U
    J Bacteriol; 1999 Jul; 181(13):4076-80. PubMed ID: 10383977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transport in acetate-grown Methanosarcina acetivorans.
    Wang M; Tomb JF; Ferry JG
    BMC Microbiol; 2011 Jul; 11():165. PubMed ID: 21781343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.