These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34435774)

  • 1. Force-Field-Based Computational Study of the Thermodynamics of a Large Set of Aqueous Alkanolamine Solvents for Post-Combustion CO
    Noroozi J; Smith WR
    J Chem Inf Model; 2021 Sep; 61(9):4497-4513. PubMed ID: 34435774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward the understanding of chemical absorption processes for post-combustion capture of carbon dioxide: electronic and steric considerations from the kinetics of reactions of CO2(aq) with sterically hindered amines.
    Conway W; Wang X; Fernandes D; Burns R; Lawrance G; Puxty G; Maeder M
    Environ Sci Technol; 2013 Jan; 47(2):1163-9. PubMed ID: 23190202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward rational design of amines for CO2 capture: Substituent effect on kinetic process for the reaction of monoethanolamine with CO2.
    Xie H; Wang P; He N; Yang X; Chen J
    J Environ Sci (China); 2015 Nov; 37():75-82. PubMed ID: 26574090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Kinetic Model of CO
    Rozanska X; Wimmer E; de Meyer F
    J Chem Inf Model; 2021 Apr; 61(4):1814-1824. PubMed ID: 33709702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparative Study of the CO2 Absorption in Some Solvent-Free Alkanolamines and in Aqueous Monoethanolamine (MEA).
    Barzagli F; Mani F; Peruzzini M
    Environ Sci Technol; 2016 Jul; 50(13):7239-46. PubMed ID: 27294832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of thermodynamics and kinetics on the carbon capture performance of the amine-based CO
    Kopac T; Demirel Y
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):39350-39371. PubMed ID: 38816632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of steric hindrance on carbon dioxide absorption into new amine solutions: thermodynamic and spectroscopic verification through solubility and NMR analysis.
    Park JY; Yoon SJ; Lee H
    Environ Sci Technol; 2003 Apr; 37(8):1670-5. PubMed ID: 12731852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent-mediated modification of thermodynamics and kinetics of monoethanolamine regeneration reaction in amine-stripping carbon capture: Computational chemistry study.
    Afify ND; Sweatman MB
    J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38165096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation and Modeling of Vapor-Liquid Equilibrium and CO
    Luo W; Yang Q; Conway W; Puxty G; Feron P; Chen J
    Environ Sci Technol; 2017 Jun; 51(12):7169-7177. PubMed ID: 28562020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and Experimental Study of the Energetic Cost Involved in the Capture of Carbon Dioxide by Aqueous Mixtures of Commonly Used Primary and Tertiary Amines.
    Arcis H; Coulier Y; Coxam JY
    Environ Sci Technol; 2016 Jan; 50(1):489-95. PubMed ID: 26630087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rigorous pK
    Sakti AW; Nishimura Y; Nakai H
    J Chem Theory Comput; 2018 Jan; 14(1):351-356. PubMed ID: 29206463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbamate stabilities of sterically hindered amines from quantum chemical methods: relevance for CO2 capture.
    Gangarapu S; Marcelis AT; Zuilhof H
    Chemphyschem; 2013 Dec; 14(17):3936-43. PubMed ID: 24203852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of hydrogen bond capacity of solvents in reactions of amines with CO
    Wang T; Xie HB; Song Z; Niu J; Chen DL; Xia D; Chen J
    J Environ Sci (China); 2020 May; 91():271-278. PubMed ID: 32172976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism Investigation of Advanced Metal-Ion-Mediated Amine Regeneration: A Novel Pathway to Reducing CO
    Li K; van der Poel P; Conway W; Jiang K; Puxty G; Yu H; Feron P
    Environ Sci Technol; 2018 Dec; 52(24):14538-14546. PubMed ID: 30481451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrosamine formation in amine scrubbing at desorber temperatures.
    Fine NA; Goldman MJ; Rochelle GT
    Environ Sci Technol; 2014; 48(15):8777-83. PubMed ID: 24956458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast and high-quality charge model for the next generation general AMBER force field.
    He X; Man VH; Yang W; Lee TS; Wang J
    J Chem Phys; 2020 Sep; 153(11):114502. PubMed ID: 32962378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding CO
    Lee B; Stowe HM; Lee KH; Hur NH; Hwang SJ; Paek E; Hwang GS
    Phys Chem Chem Phys; 2017 Sep; 19(35):24067-24075. PubMed ID: 28835966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Modeling and Simulation of CO
    Yang X; Rees RJ; Conway W; Puxty G; Yang Q; Winkler DA
    Chem Rev; 2017 Jul; 117(14):9524-9593. PubMed ID: 28517929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of amine structural characteristics on N-nitrosamine formation potential relevant to postcombustion CO2 capture systems.
    Dai N; Mitch WA
    Environ Sci Technol; 2013 Nov; 47(22):13175-83. PubMed ID: 24138561
    [TBL] [