These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34436130)

  • 1. Isolation and Characterization of Nickel-Tolerant
    De Padua JC; Dela Cruz TEE
    J Fungi (Basel); 2021 Jul; 7(8):. PubMed ID: 34436130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening of Native
    Racić G; Vukelić I; Kordić B; Radić D; Lazović M; Nešić L; Panković D
    Microorganisms; 2023 Mar; 11(3):. PubMed ID: 36985388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium.
    Nongmaithem N; Roy A; Bhattacharya PM
    Braz J Microbiol; 2016; 47(2):305-13. PubMed ID: 26991295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates.
    Kubicek CP; Bissett J; Druzhinina I; Kullnig-Gradinger C; Szakacs G
    Fungal Genet Biol; 2003 Apr; 38(3):310-9. PubMed ID: 12684020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosorption of Cadmium by Filamentous Fungi Isolated from Coastal Water and Sediments.
    Manguilimotan LC; Bitacura JG
    J Toxicol; 2018; 2018():7170510. PubMed ID: 30425739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological removing of Cadmium from contaminated media by fungal biomass of Trichoderma species.
    Mohsenzadeh F; Shahrokhi F
    J Environ Health Sci Eng; 2014; 12():102. PubMed ID: 25068039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response surface methodology study of the combined effects of temperature, pH, and aw on the growth rate of Trichoderma asperellum.
    Begoude BA; Lahlali R; Friel D; Tondje PR; Jijakli MH
    J Appl Microbiol; 2007 Oct; 103(4):845-54. PubMed ID: 17897186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Metal Tolerance of Fungal Strains Isolated from Contaminated Mining Soil of Nanjing, China.
    Liaquat F; Munis MFH; Haroon U; Arif S; Saqib S; Zaman W; Khan AR; Shi J; Che S; Liu Q
    Biology (Basel); 2020 Dec; 9(12):. PubMed ID: 33333787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [High arsenic-tolerant fungi: their isolation and tolerant ability].
    Su SM; Zeng XB; Jiang XL; Bai LY; Li LF; Zhang YR
    Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3225-30. PubMed ID: 21443013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of nickel using filamentous fungi.
    Mogollón L; Rodríguez R; Larrota W; Ramirez N; Torres R
    Appl Biochem Biotechnol; 1998; 70-72():593-601. PubMed ID: 9627396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taxonomy characterization and plumbum bioremediation of novel fungi.
    Zhu Z; Song Q; Dong F
    J Basic Microbiol; 2018 Apr; 58(4):368-376. PubMed ID: 29393504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening of antimicrobial activities in Trichoderma isolates representing three trichoderma sections.
    Vizcaíno JA; Sanz L; Basilio A; Vicente F; Gutiérrez S; Hermosa MR; Monte E
    Mycol Res; 2005 Dec; 109(Pt 12):1397-406. PubMed ID: 16353639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Ni accumulation capability by fungi for a possible approach to remove metals from soils and waters.
    Cecchi G; Roccotiello E; Di Piazza S; Riggi A; Mariotti MG; Zotti M
    J Environ Sci Health B; 2017 Mar; 52(3):166-170. PubMed ID: 28121266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An immunological approach to quantifying the saprotrophic growth dynamics of Trichoderma species during antagonistic interactions with Rhizoctonia solani in a soil-less mix.
    Thornton CR
    Environ Microbiol; 2004 Apr; 6(4):323-34. PubMed ID: 15008811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum.
    Zhang X; Li X; Yang H; Cui Z
    Ecotoxicol Environ Saf; 2018 Aug; 157():21-28. PubMed ID: 29605641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological removal of arsenic pollution by soil fungi.
    Srivastava PK; Vaish A; Dwivedi S; Chakrabarty D; Singh N; Tripathi RD
    Sci Total Environ; 2011 May; 409(12):2430-42. PubMed ID: 21459413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular heterozygosity and genetic exploitations of Trichoderma inter-fusants enhancing tolerance to fungicides and mycoparasitism against Sclerotium rolfsii Sacc.
    Hirpara DG; Gajera HP
    Infect Genet Evol; 2018 Dec; 66():26-36. PubMed ID: 30219319
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Amanullah F; Khan WU
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening of five marine-derived fungal strains for their potential to produce oxidases with laccase activities suitable for biotechnological applications.
    Ben Ali W; Chaduli D; Navarro D; Lechat C; Turbé-Doan A; Bertrand E; Faulds CB; Sciara G; Lesage-Meessen L; Record E; Mechichi T
    BMC Biotechnol; 2020 May; 20(1):27. PubMed ID: 32398071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocontrol potential of saline- or alkaline-tolerant Trichoderma asperellum mutants against three pathogenic fungi under saline or alkaline stress conditions.
    Guo R; Wang Z; Huang Y; Fan H; Liu Z
    Braz J Microbiol; 2018 Nov; 49 Suppl 1(Suppl 1):236-245. PubMed ID: 29691191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.