These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34436204)

  • 1. Virulence Traits and Population Genomics of the Black Yeast
    Černoša A; Sun X; Gostinčar C; Fang C; Gunde-Cimerman N; Song Z
    J Fungi (Basel); 2021 Aug; 7(8):. PubMed ID: 34436204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative pathogenicity of opportunistic black yeasts in Aureobasidium.
    Wang M; Danesi P; James TY; Al-Hatmi AMS; Najafzadeh MJ; Dolatabadi S; Ming C; Liou GY; Kang Y; de Hoog S
    Mycoses; 2019 Sep; 62(9):803-811. PubMed ID: 31107996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clonality, inbreeding, and hybridization in two extremotolerant black yeasts.
    Gostinčar C; Sun X; Černoša A; Fang C; Gunde-Cimerman N; Song Z
    Gigascience; 2022 Oct; 11():. PubMed ID: 36200832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An insight into the iron acquisition and homeostasis in Aureobasidium melanogenum HN6.2 strain through genome mining and transcriptome analysis.
    Lu Y; Liu G; Jiang H; Chi Z; Chi Z
    Funct Integr Genomics; 2019 Jan; 19(1):137-150. PubMed ID: 30251029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical
    Magoye E; Nägeli L; Bühlmann A; Hilber-Bodmer M; Keller P; Mühlethaler K; Riat A; Schrenzel J; Freimoser FM
    Microbiol Spectr; 2023 Mar; 11(2):e0529922. PubMed ID: 36943135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-Tolerant Yeasts: Opportunistic Pathogenicity Versus Biocontrol Potential.
    Zajc J; Gostinčar C; Černoša A; Gunde-Cimerman N
    Genes (Basel); 2019 Jan; 10(1):. PubMed ID: 30646593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species.
    Gostinčar C; Ohm RA; Kogej T; Sonjak S; Turk M; Zajc J; Zalar P; Grube M; Sun H; Han J; Sharma A; Chiniquy J; Ngan CY; Lipzen A; Barry K; Grigoriev IV; Gunde-Cimerman N
    BMC Genomics; 2014 Jul; 15():549. PubMed ID: 24984952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments.
    Jiang H; Liu NN; Liu GL; Chi Z; Wang JM; Zhang LL; Chi ZM
    Extremophiles; 2016 Jul; 20(4):567-77. PubMed ID: 27290725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Aureobasidium melanogenum for the overproduction of putrescine by improved L-ornithine biosynthesis.
    Kong CC; Wei X; Liu GL; Chi ZM; Chi Z
    Microbiol Res; 2022 Jul; 260():127041. PubMed ID: 35483312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high molecular weight polymalate is synthesized by the whole genome duplicated strain Aureobasidium melanogenum OUC.
    Qi CY; Chi Z; Liu GL; Chi ZM
    Int J Biol Macromol; 2022 Mar; 202():608-619. PubMed ID: 35081435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aureobasidium melanogenum: a native of dark biofinishes on oil treated wood.
    van Nieuwenhuijzen EJ; Houbraken JA; Meijer M; Adan OC; Samson RA
    Antonie Van Leeuwenhoek; 2016 May; 109(5):661-83. PubMed ID: 26920754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superficial Phaeohyphomycosis Caused by Aureobasidium melanogenum Mimicking Tinea Nigra in an Immunocompetent Patient and Review of Published Reports.
    Chen WT; Tu ME; Sun PL
    Mycopathologia; 2016 Aug; 181(7-8):555-60. PubMed ID: 26883514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Production of Melanin by Aureobasidium Melanogenum Using a Simplified Medium and pH-Controlled Fermentation Strategy with the Cell Morphology Analysis.
    Zhou R; Ma L; Qin X; Zhu H; Chen G; Liang Z; Zeng W
    Appl Biochem Biotechnol; 2024 Feb; 196(2):1122-1141. PubMed ID: 37335457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The signaling pathways involved in metabolic regulation and stress responses of the yeast-like fungi Aureobasidium spp.
    Chi Z; Kong CC; Wang ZZ; Wang Z; Liu GL; Hu Z; Chi ZM
    Biotechnol Adv; 2022; 55():107898. PubMed ID: 34974157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Draft genome sequence of potentially dikaryotic black fungus
    Wagner DN; Varaljay VA; Lyon WJ; Crouch AL; Allex-Buckner C; Biffinger JC; Crookes-Goodson WJ; Kelley-Loughnane N; Stamps BW
    Microbiol Resour Announc; 2024 Mar; 13(3):e0075623. PubMed ID: 38376194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly and comparative genome analysis of a Patagonian Aureobasidium pullulans isolate reveals unexpected intraspecific variation.
    Parra M; Libkind D; Hittinger CT; Álvarez L; Bellora N
    Yeast; 2023 May; 40(5-6):197-213. PubMed ID: 37114349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycerol, trehalose and vacuoles had relations to pullulan synthesis and osmotic tolerance by the whole genome duplicated strain Aureobasidium melanogenum TN3-1 isolated from natural honey.
    Chen L; Wei X; Liu GL; Hu Z; Chi ZM; Chi Z
    Int J Biol Macromol; 2020 Dec; 165(Pt A):131-140. PubMed ID: 32987074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cAMP-PKA and HOG1 signaling pathways regulate liamocin production by different ways via the transcriptional activator Msn2 in Aureobasidium melanogenum.
    Zhang M; Gao ZC; Chi Z; Liu GL; Hu Z; Chi ZM
    Enzyme Microb Technol; 2021 Feb; 143():109705. PubMed ID: 33375973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome editing of different strains of Aureobasidium melanogenum using an efficient Cre/loxp site-specific recombination system.
    Zhang Z; Lu Y; Chi Z; Liu GL; Jiang H; Hu Z; Chi ZM
    Fungal Biol; 2019 Oct; 123(10):723-731. PubMed ID: 31542190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melanin biosynthesis in the desert-derived Aureobasidium melanogenum XJ5-1 is controlled mainly by the CWI signal pathway via a transcriptional activator Cmr1.
    Jiang H; Chi Z; Liu GL; Hu Z; Zhao SZ; Chi ZM
    Curr Genet; 2020 Feb; 66(1):173-185. PubMed ID: 31263942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.