BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34436213)

  • 21. Enhancement of carotenoid production and its regulation in edible mushroom Cordyceps militaris by abiotic stresses.
    Zhao Y; Li SL; Chen HY; Zou Y; Zheng QW; Guo LQ; Wu GH; Lu J; Lin JF; Ye ZW
    Enzyme Microb Technol; 2021 Aug; 148():109808. PubMed ID: 34116757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DASH-type cryptochromes regulate fruiting body development and secondary metabolism differently than CmWC-1 in the fungus Cordyceps militaris.
    Wang F; Song X; Dong X; Zhang J; Dong C
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4645-4657. PubMed ID: 28409381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. XRN1-associated long non-coding RNAs may contribute to fungal virulence and sexual development in entomopathogenic fungus Cordyceps militaris.
    Wang Y; Shao Y; Zhu Y; Wang K; Ma B; Zhou Q; Chen A; Chen H
    Pest Manag Sci; 2019 Dec; 75(12):3302-3311. PubMed ID: 31025499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in research on Cordyceps militaris degeneration.
    Lou H; Lin J; Guo L; Wang X; Tian S; Liu C; Zhao Y; Zhao R
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):7835-7841. PubMed ID: 31410524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Cell Wall Integrity Pathway Contributes to the Early Stages of
    Rocha MC; Fabri JHTM; Simões IT; Silva-Rocha R; Hagiwara D; da Cunha AF; Goldman GH; Cánovas D; Malavazi I
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 32005734
    [No Abstract]   [Full Text] [Related]  

  • 26. Expression profiling of Cordyceps DnaJ protein family in Tolypocladium guangdongense during developmental and temperature stress processes.
    Wang G; Li M; Cheng H; Zhang C; Deng W; Li T
    Gene; 2020 Jun; 743():144563. PubMed ID: 32165290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heat and light stresses affect metabolite production in the fruit body of the medicinal mushroom Cordyceps militaris.
    Jiaojiao Z; Fen W; Kuanbo L; Qing L; Ying Y; Caihong D
    Appl Microbiol Biotechnol; 2018 May; 102(10):4523-4533. PubMed ID: 29594343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome resequencing and transcriptome analysis reveal the molecular mechanism of albinism in
    Zhao Y; Liu Y; Chen X; Xiao J
    Front Microbiol; 2023; 14():1153153. PubMed ID: 37113230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving Hypoxia Adaption Causes Distinct Effects on Growth and Bioactive Compounds Synthesis in an Entomopathogenic Fungus
    Wang Y; Yang Z; Bao D; Li B; Yin X; Wu Y; Chen H; Tang G; Li N; Zou G
    Front Microbiol; 2021; 12():698436. PubMed ID: 34239513
    [No Abstract]   [Full Text] [Related]  

  • 30. A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis.
    Fang W; Pei Y; Bidochka MJ
    Microbiology (Reading); 2007 Apr; 153(Pt 4):1017-1025. PubMed ID: 17379711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological Characteristics of Conidiogenesis in Cordyceps militaris.
    Shrestha B; Han SK; Yoon KS; Sung JM
    Mycobiology; 2005 Jun; 33(2):69-76. PubMed ID: 24049477
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptome Analysis of
    Lou HW; Zhao Y; Tang HB; Ye ZW; Wei T; Lin JF; Guo LQ
    Front Microbiol; 2019; 10():2105. PubMed ID: 31552008
    [No Abstract]   [Full Text] [Related]  

  • 33.
    Jo E; Jang HJ; Shen L; Yang KE; Jang MS; Huh YH; Yoo HS; Park J; Jang IS; Park SJ
    Integr Cancer Ther; 2020; 19():1534735420923756. PubMed ID: 32456485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional convergence and divergence of mating-type genes fulfilling in Cordyceps militaris.
    Lu Y; Xia Y; Luo F; Dong C; Wang C
    Fungal Genet Biol; 2016 Mar; 88():35-43. PubMed ID: 26812121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review.
    Zhang J; Wen C; Duan Y; Zhang H; Ma H
    Int J Biol Macromol; 2019 Jul; 132():906-914. PubMed ID: 30954592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Slt2-MAPK/RNS1 Controls Conidiation via Direct Regulation of the Central Regulatory Pathway in the Fungus
    Meng Y; Tang X; Bao Y; Zhang M; Tang D; Zhang X; Chen X; Fang W
    J Fungi (Basel); 2021 Dec; 8(1):. PubMed ID: 35049966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carotenoid Production by Caterpillar Medicinal Mushrooms, Cordyceps militaris (Ascomycetes), under Different Culture Conditions.
    Yang Y; Bu N; Wang S; Zhang J; Wang Y; Dong C
    Int J Med Mushrooms; 2020; 22(12):1191-1201. PubMed ID: 33463936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptomic analysis of the orchestrated molecular mechanisms underlying fruiting body initiation in Chinese cordyceps.
    Zhao Y; Zhang J; Meng Q; Zhang H; Zhou G; Li M; Wu P; Shu R; Gao X; Guo L; Tong Y; Cheng L; Guo L; Chen C; Qin Q
    Gene; 2020 Dec; 763():145061. PubMed ID: 32818595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Transcriptome Analysis Between a Spontaneous Albino Mutant and Its Sibling Strain of
    Wang F; Liu Q; Zhang J; Liu K; Li K; Liu G; Dong C
    Front Microbiol; 2018; 9():1237. PubMed ID: 29937763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physicochemical, functional and structural properties of the major protein fractions extracted from Cordyceps militaris fruit body.
    Yu XY; Zou Y; Zheng QW; Lu FX; Li DH; Guo LQ; Lin JF
    Food Res Int; 2021 Apr; 142():110211. PubMed ID: 33773685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.