These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 34436305)

  • 21. Marine-Derived Actinomycetes: Biodegradation of Plastics and Formation of PHA Bioplastics-A Circular Bioeconomy Approach.
    Oliveira J; Almeida PL; Sobral RG; Lourenço ND; Gaudêncio SP
    Mar Drugs; 2022 Dec; 20(12):. PubMed ID: 36547907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock.
    Thomas AP; Kasa VP; Dubey BK; Sen R; Sarmah AK
    Sci Total Environ; 2023 Dec; 904():167243. PubMed ID: 37741416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Algal-based bioplastics: global trends in applied research, technologies, and commercialization.
    Mogany T; Bhola V; Bux F
    Environ Sci Pollut Res Int; 2024 Jun; 31(26):38022-38044. PubMed ID: 38787471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feasibility of bioplastic production using micro- and macroalgae- A review.
    Sudhakar MP; Maurya R; Mehariya S; Karthikeyan OP; Dharani G; Arunkumar K; Pereda SV; Hernández-González MC; Buschmann AH; Pugazhendhi A
    Environ Res; 2024 Jan; 240(Pt 2):117465. PubMed ID: 37879387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Algae biopolymer towards sustainable circular economy.
    Devadas VV; Khoo KS; Chia WY; Chew KW; Munawaroh HSH; Lam MK; Lim JW; Ho YC; Lee KT; Show PL
    Bioresour Technol; 2021 Apr; 325():124702. PubMed ID: 33487515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Algal bioplastics: current market trends and technical aspects.
    Nanda N; Bharadvaja N
    Clean Technol Environ Policy; 2022; 24(9):2659-2679. PubMed ID: 35855786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Green Bioplastics as Part of a Circular Bioeconomy.
    Karan H; Funk C; Grabert M; Oey M; Hankamer B
    Trends Plant Sci; 2019 Mar; 24(3):237-249. PubMed ID: 30612789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes.
    Roy Chong JW; Tan X; Khoo KS; Ng HS; Jonglertjunya W; Yew GY; Show PL
    Environ Res; 2022 Apr; 206():112620. PubMed ID: 34968431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future.
    Rekhi P; Goswami M; Ramakrishna S; Debnath M
    Crit Rev Biotechnol; 2022 Aug; 42(5):668-692. PubMed ID: 34645360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of biotechnology in the transition from plastics to bioplastics: an opportunity to reconnect global growth with sustainability.
    Degli Esposti M; Morselli D; Fava F; Bertin L; Cavani F; Viaggi D; Fabbri P
    FEBS Open Bio; 2021 Apr; 11(4):967-983. PubMed ID: 33595898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review.
    Yoon J; Oh MK
    Bioresour Technol; 2022 Jan; 344(Pt B):126307. PubMed ID: 34767907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioplastic Production from Microalgae: A Review.
    Onen Cinar S; Chong ZK; Kucuker MA; Wieczorek N; Cengiz U; Kuchta K
    Int J Environ Res Public Health; 2020 May; 17(11):. PubMed ID: 32481700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biopackaging Potential Alternatives: Bioplastic Composites of Polyhydroxyalkanoates and Vegetal Fibers.
    Gómez-Gast N; López Cuellar MDR; Vergara-Porras B; Vieyra H
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation.
    Ma R; Li J; Tyagi RD; Zhang X
    Bioresour Technol; 2024 Jan; 391(Pt A):129977. PubMed ID: 37925086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sustainable Valorization of Bioplastic Waste: A Review on Effective Recycling Routes for the Most Widely Used Biopolymers.
    Bartolucci L; Cordiner S; De Maina E; Kumar G; Mele P; Mulone V; Igliński B; Piechota G
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyanobacterial Polyhydroxyalkanoates: A Sustainable Alternative in Circular Economy.
    Gomes Gradíssimo D; Pereira Xavier L; Valadares Santos A
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32971731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects.
    Kumar A; Srivastava JK; Mallick N; Singh AK
    Recent Pat Biotechnol; 2015; 9(1):4-21. PubMed ID: 26073514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production?
    Khatami K; Perez-Zabaleta M; Owusu-Agyeman I; Cetecioglu Z
    Waste Manag; 2021 Jan; 119():374-388. PubMed ID: 33139190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trends in PHA Production by Microbially Diverse and Functionally Distinct Communities.
    Angra V; Sehgal R; Gupta R
    Microb Ecol; 2023 Feb; 85(2):572-585. PubMed ID: 35333950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent developments in short- and medium-chain- length Polyhydroxyalkanoates: Production, properties, and applications.
    Muthuraj R; Valerio O; Mekonnen TH
    Int J Biol Macromol; 2021 Sep; 187():422-440. PubMed ID: 34324901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.