BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34436322)

  • 21. Data on ion-exchange membrane fouling by humic acid during electrodialysis.
    De Jaegher B; Larumbe E; De Schepper W; Verliefde A; Nopens I
    Data Brief; 2020 Aug; 31():105763. PubMed ID: 32490101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electro-membrane filtration for the selective isolation of bioactive peptides from an alpha(s2)-casein hydrolysate.
    Bargeman G; Houwing J; Recio I; Koops GH; van der Horst C
    Biotechnol Bioeng; 2002 Dec; 80(6):599-609. PubMed ID: 12378601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bovine Hemoglobin Enzymatic Hydrolysis by a New Ecoefficient Process-Part I: Feasibility of Electrodialysis with Bipolar Membrane and Production of Neokyotorphin (α137-141).
    Abou-Diab M; Thibodeau J; Deracinois B; Flahaut C; Fliss I; Dhulster P; Nedjar N; Bazinet L
    Membranes (Basel); 2020 Sep; 10(10):. PubMed ID: 32992811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of a Whey Protein Hydrolysate Treated by Electrodialysis with Ultrafiltration Membrane on the Development of Metabolic Syndrome and the Modulation of Gut Microbiota in Mice.
    Renaud V; Faucher M; Dubois MJ; Pilon G; Varin T; Marette A; Bazinet L
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Harnessing slaughterhouse by-products: From wastes to high-added value natural food preservative.
    Przybylski R; Bazinet L; Firdaous L; Kouach M; Goossens JF; Dhulster P; Nedjar N
    Food Chem; 2020 Jan; 304():125448. PubMed ID: 31491713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of an electrodialytic reactor for the simultaneous β-lactoglobulin enzymatic hydrolysis and fractionation of generated bioactive peptides.
    Doyen A; Husson E; Bazinet L
    Food Chem; 2013 Feb; 136(3-4):1193-202. PubMed ID: 23194514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impacts of pH and Base Substitution during Deaerator Treatments of Herring Milt Hydrolysate on the Odorous Content and the Antioxidant Activity.
    Todeschini S; Perreault V; Goulet C; Bouchard M; Dubé P; Boutin Y; Bazinet L
    Foods; 2022 Jun; 11(13):. PubMed ID: 35804649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Investigation on the Application of Pulsed Electrodialysis Reversal in Whey Desalination.
    Merkel A; Ashrafi AM
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31003492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane processes and devices for separation of bioactive peptides.
    Bazinet L; Firdaous L
    Recent Pat Biotechnol; 2009; 3(1):61-72. PubMed ID: 19149724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Effect of Different pH Conditions on Peptides' Separation from the Skipjack Dark Meat Hydrolysate Using Ceramic Ultrafiltration.
    Pinrattananon S; Courtes F; Chorhirankul N; Payongsri P; Pongtharangkul T; Janssen AEM; Niamsiri N
    Foods; 2023 Sep; 12(18):. PubMed ID: 37761076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel H
    He X; Li B; Wang P; Ma J
    Water Res; 2019 Dec; 167():115111. PubMed ID: 31574347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a New Deodorization Method of Herring Milt Hydrolysate: Impacts of pH, Stirring with Nitrogen and Deaerator Treatment on the Odorous Content.
    Todeschini S; Perreault V; Goulet C; Bouchard M; Dubé P; Boutin Y; Bazinet L
    Foods; 2021 Apr; 10(4):. PubMed ID: 33920688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separation of Biologically Active Compounds by Membrane Operations.
    Zhu X; Bai R
    Curr Pharm Des; 2017; 23(2):218-230. PubMed ID: 27799041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pilot-Scale Selective Electrodialysis for the Separation of Chloride and Sulphate from High-Salinity Wastewater.
    Li F; Guo Y; Wang S
    Membranes (Basel); 2022 Jun; 12(6):. PubMed ID: 35736317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fouling characterization and control for harvesting microalgae Arthrospira (Spirulina) maxima using a submerged, disc-type ultrafiltration membrane.
    Kanchanatip E; Su BR; Tulaphol S; Den W; Grisdanurak N; Kuo CC
    Bioresour Technol; 2016 Jun; 209():23-30. PubMed ID: 26946437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective separation of peptides contained in a rapeseed (Brassica campestris L.) protein hydrolysate using UF/NF membranes.
    Tessier B; Harscoat-Schiavo C; Marc I
    J Agric Food Chem; 2006 May; 54(10):3578-84. PubMed ID: 19127728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recovery of ammonium sulfate from fermentation waste by electrodialysis.
    Lee HJ; Oh SJ; Moon SH
    Water Res; 2003 Mar; 37(5):1091-9. PubMed ID: 12553984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrodialysis with porous membrane for bioproduct separation: Technology, features, and progress.
    Sun L; Chen Q; Lu H; Wang J; Zhao J; Li P
    Food Res Int; 2020 Nov; 137():109343. PubMed ID: 33233052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater.
    Gwon EM; Yu MJ; Oh HK; Ylee YH
    Water Res; 2003 Jul; 37(12):2989-97. PubMed ID: 12767302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter.
    Lee H; Amy G; Cho J; Yoon Y; Moon SH; Kim IS
    Water Res; 2001 Oct; 35(14):3301-8. PubMed ID: 11547850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.