These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34436322)

  • 41. Factors Influencing the Formation of Salicylic Acid by Bipolar Membranes Electrodialysis.
    Medina-Collana JT; Rosales-Huamani JA; Franco-Gonzales EJ; Montaño-Pisfil JA
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207071
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries.
    Luján-Facundo MJ; Mendoza-Roca JA; Cuartas-Uribe B; Álvarez-Blanco S
    Ultrason Sonochem; 2016 Nov; 33():18-25. PubMed ID: 27245952
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations.
    Barros KS; Scarazzato T; Pérez-Herranz V; Espinosa DCR
    Membranes (Basel); 2020 Apr; 10(4):. PubMed ID: 32290497
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Amino acid composition and antioxidant properties of the enzymatic hydrolysate of calabash nutmeg (Monodora myristica) and its membrane ultrafiltration peptide fractions.
    Akinyede AI; Fagbemi TN; Osundahunsi OF; Aluko RE
    J Food Biochem; 2021 Mar; 45(3):e13437. PubMed ID: 32794208
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of hydraulically reversible and hydraulically irreversible fouling on the removal of MS2 and φX174 bacteriophage by an ultrafiltration membrane.
    ElHadidy AM; Peldszus S; Van Dyke MI
    Water Res; 2014 Sep; 61():297-307. PubMed ID: 24967952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conversion of sodium lactate to lactic acid with water-splitting electrodialysis.
    Persson A; Garde A; Jönsson AS; Jonsson G; Zacchi G
    Appl Biochem Biotechnol; 2001 Jun; 94(3):197-211. PubMed ID: 11563823
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High efficient dye removal with hydrolyzed ethanolamine-Polyacrylonitrile UF membrane: Rejection of anionic dye and selective adsorption of cationic dye.
    Yun J; Wang Y; Liu Z; Li Y; Yang H; Xu ZL
    Chemosphere; 2020 Nov; 259():127390. PubMed ID: 32593817
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of calcium and carbonate concentrations on anionic membrane fouling during electrodialysis.
    Araya-Farias M; Bazinet L
    J Colloid Interface Sci; 2006 Apr; 296(1):242-7. PubMed ID: 16182306
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Production of a phenolic antioxidant enriched cranberry juice by electrodialysis with filtration membrane.
    Bazinet L; Cossec C; Gaudreau H; Desjardins Y
    J Agric Food Chem; 2009 Nov; 57(21):10245-51. PubMed ID: 19886681
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Membrane backwash cleaning using CO
    Al-Ghamdi MA; Alhadidi A; Ghaffour N
    Water Res; 2019 Nov; 165():114985. PubMed ID: 31445307
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Herring Milt Protein Hydrolysate Improves Insulin Resistance in High-Fat-Diet-Induced Obese Male C57BL/6J Mice.
    Wang Y; Gagnon J; Nair S; Sha S
    Mar Drugs; 2019 Aug; 17(8):. PubMed ID: 31382619
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of biochar-ultrafiltration membrane processes for humic acid removal under various hydrodynamic, pH, ionic strength, and pressure conditions.
    Shankar V; Heo J; Al-Hamadani YAJ; Park CM; Chu KH; Yoon Y
    J Environ Manage; 2017 Jul; 197():610-618. PubMed ID: 28432886
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrasound-enhanced membrane-cleaning processes applied water treatments: influence of sonic frequency on filtration treatments.
    Kobayashi T; Kobayashi T; Hosaka Y; Fujii N
    Ultrasonics; 2003 May; 41(3):185-90. PubMed ID: 12726939
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A study on near zero liquid discharge approach for the treatment of reverse osmosis membrane concentrate by electrodialysis.
    Balcik-Canbolat C; Sengezer C; Sakar H; Karagunduz A; Keskinler B
    Environ Technol; 2020 Jan; 41(4):440-449. PubMed ID: 30010517
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CO
    Moreno J; de Hart N; Saakes M; Nijmeijer K
    Water Res; 2017 Nov; 125():23-31. PubMed ID: 28834766
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tracking inorganic foulants irreversibly accumulated on low-pressure membranes for treating surface water.
    Yamamura H; Kimura K; Higuchi K; Watanabe Y; Ding Q; Hafuka A
    Water Res; 2015 Dec; 87():218-24. PubMed ID: 26414890
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of calcium and carbonate concentrations on cationic membrane fouling during electrodialysis.
    Bazinet L; Araya-Farias M
    J Colloid Interface Sci; 2005 Jan; 281(1):188-96. PubMed ID: 15567395
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fouling in reverse electrodialysis under natural conditions.
    Vermaas DA; Kunteng D; Saakes M; Nijmeijer K
    Water Res; 2013 Mar; 47(3):1289-98. PubMed ID: 23266386
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preliminary Study on Enzymatic-Based Cleaning of Cation-Exchange Membranes Used in Electrodialysis System in Red Wine Production.
    Bdiri M; Bensghaier A; Chaabane L; Kozmai A; Baklouti L; Larchet C
    Membranes (Basel); 2019 Sep; 9(9):. PubMed ID: 31484438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.