BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34436338)

  • 1. Application and Analysis of Bipolar Membrane Electrodialysis for LiOH Production at High Electrolyte Concentrations: Current Scope and Challenges.
    González A; Grágeda M; Quispe A; Ushak S; Sistat P; Cretin M
    Membranes (Basel); 2021 Jul; 11(8):. PubMed ID: 34436338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and Validation of a LiOH Production Process by Bipolar Membrane Electrodialysis from Concentrated LiCl.
    González A; Grágeda M; Ushak S
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of a Process for Producing Battery Grade Lithium Hydroxide by Membrane Electrodialysis.
    Grageda M; Gonzalez A; Quispe A; Ushak S
    Membranes (Basel); 2020 Aug; 10(9):. PubMed ID: 32854211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrodialysis for the Concentration of Lithium-Containing Brines-An Investigation on the Applicability.
    Rögener F; Tetampel L
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium recovery using electrochemical technologies: Advances and challenges.
    Wu L; Zhang C; Kim S; Hatton TA; Mo H; Waite TD
    Water Res; 2022 Aug; 221():118822. PubMed ID: 35834973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation Additive Enabled Rechargeable LiOH-Based Lithium-Oxygen Batteries.
    Bi X; Li M; Liu C; Yuan Y; Wang H; Key B; Wang R; Shahbazian-Yassar R; Curtiss LA; Lu J; Amine K
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):22978-22982. PubMed ID: 33017504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling Lithium from Waste Lithium Bromide to Produce Lithium Hydroxide.
    Gao W; Wei X; Chen J; Jin J; Wu K; Meng W; Wang K
    Membranes (Basel); 2021 Sep; 11(10):. PubMed ID: 34677525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of [Na
    Torres WR; Zeballos NC; Flexer V
    Faraday Discuss; 2023 Oct; 247(0):101-124. PubMed ID: 37477538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Electrodialysis Desalination Performance of Novel Bioinspired and Conventional Ion Exchange Membranes with Sodium Chloride Feed Solutions.
    Hyder AG; Morales BA; Cappelle MA; Percival SJ; Small LJ; Spoerke ED; Rempe SB; Walker WS
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33808723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable Lithium Recovery from Hypersaline Salt-Lakes by Selective Electrodialysis: Transport and Thermodynamics.
    Foo ZH; Thomas JB; Heath SM; Garcia JA; Lienhard JH
    Environ Sci Technol; 2023 Oct; 57(39):14747-14759. PubMed ID: 37721998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy Harvesting from Brines by Reverse Electrodialysis Using Nafion Membranes.
    Avci AH; Messana DA; Santoro S; Tufa RA; Curcio E; Di Profio G; Fontananova E
    Membranes (Basel); 2020 Jul; 10(8):. PubMed ID: 32731421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis.
    Ghyselbrecht K; Silva A; Van der Bruggen B; Boussu K; Meesschaert B; Pinoy L
    J Environ Manage; 2014 Jul; 140():69-75. PubMed ID: 24726967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transitioning from electrodialysis to reverse electrodialysis stack design for energy generation from high concentration salinity gradients.
    Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ
    Energy Convers Manag; 2021 Sep; 244():None. PubMed ID: 34538999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse electrodialysis (RED) using a bipolar membrane to suppress inorganic fouling around the cathode.
    Han JH; Jeong N; Kim CS; Hwang KS; Kim H; Nam JY; Jwa E; Yang S; Choi J
    Water Res; 2019 Dec; 166():115078. PubMed ID: 31542547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrodialysis with Bipolar Membranes for the Sustainable Production of Chemicals from Seawater Brines at Pilot Plant Scale.
    Cassaro C; Virruso G; Culcasi A; Cipollina A; Tamburini A; Micale G
    ACS Sustain Chem Eng; 2023 Feb; 11(7):2989-3000. PubMed ID: 36844752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine.
    Zhang S; Wei X; Cao X; Peng M; Wang M; Jiang L; Jin J
    Nat Commun; 2024 Jan; 15(1):238. PubMed ID: 38172144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Novel Strategy for Increasing the Efficiency and Yield of the Bipolar Membrane Electrodialysis by the Double Conjugate Salts Stress.
    Wang D; Meng W; Lei Y; Li C; Cheng J; Qu W; Wang G; Zhang M; Li S
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32033418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors Influencing the Formation of Salicylic Acid by Bipolar Membranes Electrodialysis.
    Medina-Collana JT; Rosales-Huamani JA; Franco-Gonzales EJ; Montaño-Pisfil JA
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bipolar Membrane Electrodialysis for Sulfate Recycling in the Metallurgical Industries.
    Kuldeep ; Badenhorst WD; Kauranen P; Pajari H; Ruismäki R; Mannela P; Murtomäki L
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromium-Modified Heterogeneous Bipolar Membrane: Structure, Characteristics, and Practical Application in Electrodialysis.
    Kozaderova O
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.