BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34436339)

  • 1. Characterization of Dimeric Vanadium Uptake and Species in Nafion™ and Novel Membranes from Vanadium Redox Flow Batteries Electrolytes.
    Lutz C; Breuckmann M; Hampel S; Kreyenschmidt M; Ke X; Beuermann S; Schafner K; Turek T; Kunz U; Buzanich AG; Radtke M; Fittschen UEA
    Membranes (Basel); 2021 Jul; 11(8):. PubMed ID: 34436339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the through-plane profile of vanadium species in hydrated Nafion studied with micro X-ray absorption near-edge structure spectroscopy - proof of concept.
    Lutz C; Hampel S; Beuermann S; Turek T; Kunz U; Garrevoet J; Falkenberg G; Fittschen U
    J Synchrotron Radiat; 2021 Nov; 28(Pt 6):1865-1873. PubMed ID: 34738941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Membrane Equivalent Weight and Reinforcement on Ionic Species Crossover in All-Vanadium Redox Flow Batteries.
    Ashraf Gandomi Y; Aaron DS; Mench MM
    Membranes (Basel); 2017 Jun; 7(2):. PubMed ID: 28587268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ex-Situ Evaluation of Commercial Polymer Membranes for Vanadium Redox Flow Batteries (VRFBs).
    Zhao N; Riley H; Song C; Jiang Z; Tsay KC; Neagu R; Shi Z
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33802914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.
    Sepehr F; Paddison SJ
    J Phys Chem A; 2015 Jun; 119(22):5749-61. PubMed ID: 25954916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium and Dynamic Absorption of Electrolyte Species in Cation/Anion Exchange Membranes of Vanadium Redox Flow Batteries.
    Nguyen TD; Whitehead A; Wai N; Ong SJH; Scherer GG; Xu ZJ
    ChemSusChem; 2019 Mar; 12(5):1076-1083. PubMed ID: 30523669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speciation of vanadium in water with quinine modified resin micro-column separation/preconcentration and their determination by fluorination assisted electrothermal vaporization (FETV)-inductively coupled plasma optical emission spectrometry (ICP-OES).
    Wu Y; Jiang Z; Hu B
    Talanta; 2005 Oct; 67(4):854-61. PubMed ID: 18970250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cost-effective Nafion Composite Membrane as an Effective Vanadium-Ion Barrier for Vanadium Redox Flow Batteries.
    Lou X; Yuan D; Yu Y; Lei Y; Ding M; Sun Q; Jia C
    Chem Asian J; 2020 Aug; 15(15):2357-2363. PubMed ID: 32166875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries.
    Luo X; Lu Z; Xi J; Wu Z; Zhu W; Chen L; Qiu X
    J Phys Chem B; 2005 Nov; 109(43):20310-4. PubMed ID: 16853627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patents on Membranes Based on Non-Fluorinated Polymers for Vanadium Redox Flow Batteries.
    Choi SW; Kim TH; Cha SH
    Recent Pat Nanotechnol; 2017 Jul; 11(2):123-129. PubMed ID: 27799030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TiO
    Palanisamy G; Oh TH
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Electrolyte with Elevated Average Valence for Suppressing the Capacity Decay of Vanadium Redox Flow Batteries.
    Wang Z; Guo Z; Ren J; Li Y; Liu B; Fan X; Zhao T
    ACS Cent Sci; 2023 Jan; 9(1):56-63. PubMed ID: 36712495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled Experimental-Theoretical Characterization of a Carbon Electrode in Vanadium Redox Flow Batteries using X-ray Absorption Spectroscopy.
    Sun W; Kim N; Ebrahim AM; Sharma S; Hollas A; Huang Q; Reed DM; Thomsen EC; Murugesan V; van Buuren A; Wan LF; Lee JRI
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8791-8801. PubMed ID: 38324918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the Chemical Treatment on the Physical-Chemical and Electrochemical Properties of the Commercial Nafion™ NR212 Membrane.
    Passalacqua E; Pedicini R; Carbone A; Gatto I; Matera F; Patti A; Saccà A
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33233738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Novel Anion-Exchange Blend Membranes (AEBMs) to Vanadium Redox Flow Batteries.
    Cho H; Krieg HM; Kerres JA
    Membranes (Basel); 2018 Jun; 8(2):. PubMed ID: 29921771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Critical Analysis of Membranes toward Sustainable and Efficient Vanadium Redox Flow Batteries.
    Ye J; Xia L; Li H; de Arquer FPG; Wang H
    Adv Mater; 2024 May; ():e2402090. PubMed ID: 38776138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. V5+ degradation of sulfonated Radel membranes for vanadium redox flow batteries.
    Chen D; Hickner MA
    Phys Chem Chem Phys; 2013 Jul; 15(27):11299-305. PubMed ID: 23732218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Measurement of Crossover and Interfacial Resistance of Ion-Exchange Membranes in All-Vanadium Redox Flow Batteries.
    Ashraf Gandomi Y; Aaron DS; Nolan ZB; Ahmadi A; Mench MM
    Membranes (Basel); 2020 Jun; 10(6):. PubMed ID: 32570827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.
    Jia C; Liu Q; Sun CJ; Yang F; Ren Y; Heald SM; Liu Y; Li ZF; Lu W; Xie J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17920-5. PubMed ID: 25191695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Composite Membrane Based on Sulfonated Polystyrene Implanted in a Stretched PTFE Film for Vanadium Flow Batteries.
    Gvozdik NA; Sanginov EA; Abunaeva LZ; Konev DV; Usenko AA; Novikova KS; Stevenson KJ; Dobrovolsky YA
    Chempluschem; 2020 Dec; 85(12):2580-2585. PubMed ID: 33155772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.