These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 34436401)

  • 1. Membrane-Based Solutions for the Polish Coal Mining Industry.
    Mitko K; Turek M
    Membranes (Basel); 2021 Aug; 11(8):. PubMed ID: 34436401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contamination of settling ponds and rivers as a result of discharge of radium-bearing waters from Polish coal mines.
    Chalupnik S; Michalik B; Wysocka M; Skubacz K; Mielnikow A
    J Environ Radioact; 2001; 54(1):85-98. PubMed ID: 11379077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of calcium carbonate from waste gypsum and utilization for remediation of acid mine drainage from coal mines.
    Mulopo J; Radebe V
    Water Sci Technol; 2012; 66(6):1296-300. PubMed ID: 22828309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long term changes in the concentration of radium in discharge waters of coal mines and Upper Silesian rivers.
    Chałupnik S; Wysocka M; Janson E; Chmielewska I; Wiesner M
    J Environ Radioact; 2017 May; 171():117-123. PubMed ID: 28235699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of environmental life cycle assessment for coal mining operations.
    Burchart-Korol D; Fugiel A; Czaplicka-Kolarz K; Turek M
    Sci Total Environ; 2016 Aug; 562():61-72. PubMed ID: 27092420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solutions to the problem of waste deposition at a coal-fired power plant.
    Oman J; Dejanovic B; Tuma M
    Waste Manag; 2002; 22(6):617-23. PubMed ID: 12214973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle assessment of opencast coal mine production: a case study in Yimin mining area in China.
    Zhang L; Wang J; Feng Y
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8475-8486. PubMed ID: 29307072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the area of influence of depression cone in the vicinity of lignite mine by means of triangle method and LANDSAT TM/ETM+ satellite images.
    Zawadzki J; Przeździecki K; Miatkowski Z
    J Environ Manage; 2016 Jan; 166():605-14. PubMed ID: 26610610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of pyritic coal wastes: bioprospecting and efficiency of selected consortia.
    Joulian C; Fonti V; Chapron S; Bryan CG; Guezennec AG
    Res Microbiol; 2020; 171(7):260-270. PubMed ID: 32890633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable waste management in the Indian mining industry.
    Deshpande VP; Shekdar AV
    Waste Manag Res; 2005 Aug; 23(4):343-55. PubMed ID: 16200985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research status of comprehensive utilization of coal-based solid waste (CSW) and key technologies of filling mining in China: A review.
    Zhang J; Yang K; He X; Zhao X; Wei Z; He S
    Sci Total Environ; 2024 May; 926():171855. PubMed ID: 38522538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.
    Madzivire G; Maleka PP; Vadapalli VR; Gitari WM; Lindsay R; Petrik LF
    J Environ Manage; 2014 Jan; 133():12-7. PubMed ID: 24355687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.
    Ali A; Strezov V; Davies P; Wright I
    Environ Monit Assess; 2017 Aug; 189(8):408. PubMed ID: 28733784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Exposure to silica dust in coal-mining. Analysis based on measurements made by industrial hygiene laboratories in Poland, 2001-2005].
    Mikołajczyk U; Bujak-Pietrek S; Szadkowska-Stańczyk I
    Med Pr; 2010; 61(3):287-97. PubMed ID: 20677428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of dissolved organic matter in water of coal-mining area].
    Yang C; Zhong NN; Shui YL; Wang FY; Chen DY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jan; 28(1):174-7. PubMed ID: 18422146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polonium-210 accumulates in a lake receiving coal mine discharges-anthropogenic or natural?
    Nelson AW; Eitrheim ES; Knight AW; May D; Wichman MD; Forbes TZ; Schultz MK
    J Environ Radioact; 2017 Feb; 167():211-221. PubMed ID: 27914777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of coal mine drainage ochre to water treatment reagent: Production, characterisation and application for P and Zn removal.
    Sapsford D; Santonastaso M; Thorn P; Kershaw S
    J Environ Manage; 2015 Sep; 160():7-15. PubMed ID: 26081304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Ionic Exchange Membrane Crystallizer to Recover Magnesium Hydroxide from Seawater and Industrial Brines.
    La Corte D; Vassallo F; Cipollina A; Turek M; Tamburini A; Micale G
    Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33114305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobilisation and attenuation of boron during coal mine rehabilitation, Wangaloa, New Zealand.
    Craw D; Rufaut CG; Haffert L; Todd A
    Sci Total Environ; 2006 Sep; 368(2-3):444-55. PubMed ID: 16814366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of flue gas desulfurization (FGD) by-product on water quality at an underground coal mine.
    Lamminen M; Wood J; Walker H; Chin YP; He Y; Traina SJ
    J Environ Qual; 2001; 30(4):1371-81. PubMed ID: 11476516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.