These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 34436401)

  • 21. A Review of Mine Rescue Ensembles for Underground Coal Mining in the United States.
    Kilinc FS; Monaghan WD; Powell JB
    J Eng Fiber Fabr; 2014; 9(1):174-185. PubMed ID: 27065231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).
    Tchorz-Trzeciakiewicz DE; Parkitny T
    J Environ Radioact; 2015 Nov; 149():90-8. PubMed ID: 26225833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-situ study of beneficial utilization of coal fly ash in reactive mine tailings.
    Lee JK; Shang JQ; Wang H; Zhao C
    J Environ Manage; 2014 Mar; 135():73-80. PubMed ID: 24525077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Availability of radium isotopes and heavy metals from scales and tailings of Polish hard coal mining.
    Leopold K; Michalik B; Wiegand J
    J Environ Radioact; 2007; 94(3):137-50. PubMed ID: 17350147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Potential of renewable energy development on abandoned mine areas: A case study in Liao-ning Province, Norheast China].
    Quan SM; Xi FM; Wang JY; Yin Y; Pei ZJ; Zhao FQ
    Ying Yong Sheng Tai Xue Bao; 2019 Aug; 30(8):2803-2812. PubMed ID: 31418206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. River sediment quality assessment using sediment quality indices for the Sydney basin, Australia affected by coal and coal seam gas mining.
    Ali AE; Strezov V; Davies PJ; Wright I
    Sci Total Environ; 2018 Mar; 616-617():695-702. PubMed ID: 29111250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil.
    Galhardi JA; Bonotto DM
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18911-27. PubMed ID: 27335014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of mining activities on evolution of water quality of karst waters in Midwestern Guizhou, China: evidences from hydrochemistry and isotopic composition.
    Li X; Wu P; Han Z; Zha X; Ye H; Qin Y
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1220-1230. PubMed ID: 29082473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City].
    Liu S; Wu QY; Cao XJ; Wang JN; Zhang LL; Cai DQ; Zhou LY; Liu N
    Huan Jing Ke Xue; 2016 Jan; 37(1):270-9. PubMed ID: 27078967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sources of salinity near a coal mine spoil pile, north-central Colorado.
    Zielinski RA; Otton JK; Johnson CA
    J Environ Qual; 2001; 30(4):1237-48. PubMed ID: 11476501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Equilibrium strategy-based optimization method for the coal-water conflict: A perspective from China.
    Xu J; Lv C; Zhang M; Yao L; Zeng Z
    J Environ Manage; 2015 Sep; 160():312-23. PubMed ID: 26144559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manganese and limestone interactions during mine water treatment.
    Silva AM; Cruz FL; Lima RM; Teixeira MC; Leão VA
    J Hazard Mater; 2010 Sep; 181(1-3):514-20. PubMed ID: 20570440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.
    Davies PJ; Gore DB; Khan SJ
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):10981-1000. PubMed ID: 25783163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monitoring coal mine changes and their impact on landscape patterns in an alpine region: a case study of the Muli coal mine in the Qinghai-Tibet Plateau.
    Qian D; Yan C; Xing Z; Xiu L
    Environ Monit Assess; 2017 Oct; 189(11):559. PubMed ID: 29032445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural radionuclides in plants, soils and sediments affected by U-rich coal mining activities in Brazil.
    Galhardi JA; García-Tenorio R; Bonotto DM; Díaz Francés I; Motta JG
    J Environ Radioact; 2017 Oct; 177():37-47. PubMed ID: 28601654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial-temporal evolutions of groundwater environment in prairie opencast coal mine area: a case study of Yimin Coal Mine, China.
    Dong S; Feng H; Xia M; Li Y; Wang C; Wang L
    Environ Geochem Health; 2020 Oct; 42(10):3101-3118. PubMed ID: 32162139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Verification of the "first flush" phenomenon in mine water from coal mines in the Upper Silesian Coal Basin, Poland.
    Gzyl G; Banks D
    J Contam Hydrol; 2007 Jun; 92(1-2):66-86. PubMed ID: 17287046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Destruction processes of mining on water environment in the mining area combining isotopic and hydrochemical tracer.
    Yang Y; Guo T; Jiao W
    Environ Pollut; 2018 Jun; 237():356-365. PubMed ID: 29501998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heavy metal concentrations of soils near the large opencast coal mine pits in China.
    Liu X; Shi H; Bai Z; Zhou W; Liu K; Wang M; He Y
    Chemosphere; 2020 Apr; 244():125360. PubMed ID: 31816549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mine water pollution in Scotland: nature, extent and preventative strategies.
    Younger PL
    Sci Total Environ; 2001 Jan; 265(1-3):309-26. PubMed ID: 11227275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.