BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 34436444)

  • 1. Hypometabolic Responses to Chronic Hypoxia: A Potential Role for Membrane Lipids.
    Farhat E; Weber JM
    Metabolites; 2021 Jul; 11(8):. PubMed ID: 34436444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Naked mole-rats suppress energy metabolism and modulate membrane cholesterol in chronic hypoxia.
    Farhat E; Devereaux MEM; Pamenter ME; Weber JM
    Am J Physiol Regul Integr Comp Physiol; 2020 Aug; 319(2):R148-R155. PubMed ID: 32663032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia-induced remodelling of goldfish membranes.
    Farhat E; Turenne ED; Choi K; Weber JM
    Comp Biochem Physiol B Biochem Mol Biol; 2019 Nov; 237():110326. PubMed ID: 31465877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Goldfish Response to Chronic Hypoxia: Mitochondrial Respiration, Fuel Preference and Energy Metabolism.
    Farhat E; Cheng H; Romestaing C; Pamenter M; Weber JM
    Metabolites; 2021 Mar; 11(3):. PubMed ID: 33809959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matching cellular metabolic supply and demand in energy-stressed animals.
    Staples JF; Buck LT
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Jun; 153(2):95-105. PubMed ID: 19535026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive plasticity of skeletal muscle energetics in hibernating frogs: mitochondrial proton leak during metabolic depression.
    Boutilier RG; St-Pierre J
    J Exp Biol; 2002 Aug; 205(Pt 15):2287-96. PubMed ID: 12110662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs.
    Ivanina AV; Nesmelova I; Leamy L; Sokolov EP; Sokolova IM
    J Exp Biol; 2016 Jun; 219(Pt 11):1659-74. PubMed ID: 27252455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular energy utilization and molecular origin of standard metabolic rate in mammals.
    Rolfe DF; Brown GC
    Physiol Rev; 1997 Jul; 77(3):731-58. PubMed ID: 9234964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of metabolic defense against hypoxia in hibernating frogs.
    Boutilier RG
    Respir Physiol; 2001 Nov; 128(3):365-77. PubMed ID: 11718764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do sterols reduce proton and sodium leaks through lipid bilayers?
    Haines TH
    Prog Lipid Res; 2001 Jul; 40(4):299-324. PubMed ID: 11412894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na
    Farhat E; Devereaux MEM; Cheng H; Weber JM; Pamenter ME
    Neurosci Lett; 2021 Nov; 764():136244. PubMed ID: 34530116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive responses of vertebrate neurons to anoxia--matching supply to demand.
    Buck LT; Pamenter ME
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):226-40. PubMed ID: 16621734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tribute to R. G. Boutilier: the role for skeletal muscle in the hypoxia-induced hypometabolic responses of submerged frogs.
    West TG; Donohoe PH; Staples JF; Askew GN
    J Exp Biol; 2006 Apr; 209(Pt 7):1159-68. PubMed ID: 16547288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCB-153 and temperature cause restructuring of goldfish membranes: homeoviscous response to a chemical fluidiser.
    Gonzalez A; Odjélé A; Weber JM
    Aquat Toxicol; 2013 Nov; 144-145():11-8. PubMed ID: 24121159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold tolerance in mammalian cells.
    Willis JS
    Symp Soc Exp Biol; 1987; 41():285-309. PubMed ID: 3332488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic and post-transcriptional repression support metabolic suppression in chronically hypoxic goldfish.
    Farhat E; Talarico GGM; Grégoire M; Weber JM; Mennigen JA
    Sci Rep; 2022 Apr; 12(1):5576. PubMed ID: 35368037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.
    Chicco AJ; Le CH; Gnaiger E; Dreyer HC; Muyskens JB; D'Alessandro A; Nemkov T; Hocker AD; Prenni JE; Wolfe LM; Sindt NM; Lovering AT; Subudhi AW; Roach RC
    J Biol Chem; 2018 May; 293(18):6659-6671. PubMed ID: 29540485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack.
    Hochachka PW; Buck LT; Doll CJ; Land SC
    Proc Natl Acad Sci U S A; 1996 Sep; 93(18):9493-8. PubMed ID: 8790358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism, origin, and evolution of anoxia tolerance in animals.
    Hochachka PW; Lutz PL
    Comp Biochem Physiol B Biochem Mol Biol; 2001 Dec; 130(4):435-59. PubMed ID: 11691622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The causes and functions of mitochondrial proton leak.
    Brand MD; Chien LF; Ainscow EK; Rolfe DF; Porter RK
    Biochim Biophys Acta; 1994 Aug; 1187(2):132-9. PubMed ID: 8075107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.