These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 34436831)
1. Stretchable and Conductive Composite Structural Color Hydrogel Films as Bionic Electronic Skins. Zhang H; Guo J; Wang Y; Sun L; Zhao Y Adv Sci (Weinh); 2021 Oct; 8(20):e2102156. PubMed ID: 34436831 [TBL] [Abstract][Full Text] [Related]
2. 3D Printing Silk Fibroin/Polyacrylamide Triple-Network Composite Hydrogels with Stretchability, Conductivity, and Strain-Sensing Ability as Bionic Electronic Skins. Niu Q; Huang L; Fan S; Yao X; Zhang Y ACS Biomater Sci Eng; 2024 May; 10(5):3489-3499. PubMed ID: 38661561 [TBL] [Abstract][Full Text] [Related]
3. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
4. An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications. Lo LW; Zhao J; Wan H; Wang Y; Chakrabartty S; Wang C ACS Appl Mater Interfaces; 2021 May; 13(18):21693-21702. PubMed ID: 33926183 [TBL] [Abstract][Full Text] [Related]
5. Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators. He F; You X; Gong H; Yang Y; Bai T; Wang W; Guo W; Liu X; Ye M ACS Appl Mater Interfaces; 2020 Feb; 12(5):6442-6450. PubMed ID: 31935061 [TBL] [Abstract][Full Text] [Related]
6. 3D printing of highly conductive and strongly adhesive PEDOT:PSS hydrogel-based bioelectronic interface for accurate electromyography monitoring. Wan R; Liu S; Li Z; Li G; Li H; Li J; Xu J; Liu X J Colloid Interface Sci; 2025 Jan; 677(Pt A):198-207. PubMed ID: 38816323 [TBL] [Abstract][Full Text] [Related]
7. Multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices. Yun DJ; Hong K; Kim Sh; Yun WM; Jang JY; Kwon WS; Park CE; Rhee SW ACS Appl Mater Interfaces; 2011 Jan; 3(1):43-9. PubMed ID: 21204559 [TBL] [Abstract][Full Text] [Related]
8. Composite films of oxidized multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as a contact electrode for transistor and inverter devices. Yun DJ; Rhee SW ACS Appl Mater Interfaces; 2012 Feb; 4(2):982-9. PubMed ID: 22264140 [TBL] [Abstract][Full Text] [Related]
9. Bioinspired conductive structural color hydrogels as a robotic knuckle rehabilitation electrical skin. Shao W; Zhang L; Jiang Z; Xu M; Chen Y; Li S; Liu C Nanoscale Horiz; 2022 Oct; 7(11):1411-1417. PubMed ID: 36093895 [TBL] [Abstract][Full Text] [Related]
10. Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT:PSS composite films studied by current-sensing AFM. Lee HJ; Lee J; Park SM J Phys Chem B; 2010 Mar; 114(8):2660-6. PubMed ID: 20141126 [TBL] [Abstract][Full Text] [Related]
11. Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS. Kayser LV; Lipomi DJ Adv Mater; 2019 Mar; 31(10):e1806133. PubMed ID: 30600559 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Microstructural Uniformity in Sulfuric-Acid-Treated Poly(3,4-Ethylenedioxythiophene):Poly(Styrene Sulfonate) Films Using Raman Map Analysis. Kim H; Park J; Jang J; Sasongko NA; Heo J; Lee S; Kwak K; Kee S; Park M Macromol Rapid Commun; 2024 Sep; 45(18):e2400299. PubMed ID: 38850109 [TBL] [Abstract][Full Text] [Related]
13. Tailoring conductive inverse opal films with anisotropic elliptical porous patterns for nerve cell orientation. Zhang Z; Wang Y; Chen Z; Xu D; Zhang D; Wang F; Zhao Y J Nanobiotechnology; 2022 Mar; 20(1):117. PubMed ID: 35264196 [TBL] [Abstract][Full Text] [Related]
14. One-Step Approach to Prepare Transparent Conductive Regenerated Silk Fibroin/PEDOT:PSS Films for Electroactive Cell Culture. Zhuang A; Huang X; Fan S; Yao X; Zhu B; Zhang Y ACS Appl Mater Interfaces; 2022 Jan; 14(1):123-137. PubMed ID: 34935351 [TBL] [Abstract][Full Text] [Related]
15. Bio-inspired shape-memory structural color hydrogel film. Wang Y; Zhang Z; Chen H; Zhang H; Zhang H; Zhao Y Sci Bull (Beijing); 2022 Mar; 67(5):512-519. PubMed ID: 36546172 [TBL] [Abstract][Full Text] [Related]
16. A Stretchable and Transparent Electrode Based on PEGylated Silk Fibroin for In Vivo Dual-Modal Neural-Vascular Activity Probing. Cui Y; Zhang F; Chen G; Yao L; Zhang N; Liu Z; Li Q; Zhang F; Cui Z; Zhang K; Li P; Cheng Y; Zhang S; Chen X Adv Mater; 2021 Aug; 33(34):e2100221. PubMed ID: 34278616 [TBL] [Abstract][Full Text] [Related]
17. Highly Electrically Conductive Flexible Ionogels by Drop-Casting Ionic Liquid/PEDOT:PSS Composite Liquids onto Hydrogel Networks. Yang J; Chang L; Ma C; Cao Z; Liu H Macromol Rapid Commun; 2022 Jan; 43(1):e2100557. PubMed ID: 34669220 [TBL] [Abstract][Full Text] [Related]
18. Self-adhesive, conductive, and multifunctional hybrid hydrogel for flexible/wearable electronics based on triboelectric and piezoresistive sensor. Qiu C; He M; Xu SF; Ali AM; Shen L; Wang JS Int J Biol Macromol; 2024 Jun; 269(Pt 2):131825. PubMed ID: 38679271 [TBL] [Abstract][Full Text] [Related]
19. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. Zheng H; Lin N; He Y; Zuo B ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080 [TBL] [Abstract][Full Text] [Related]
20. Intrinsically Stretchable Block Copolymer Based on PEDOT:PSS for Improved Performance in Bioelectronic Applications. Blau R; Chen AX; Polat B; Becerra LL; Runser R; Zamanimeymian B; Choudhary K; Lipomi DJ ACS Appl Mater Interfaces; 2022 Feb; 14(4):4823-4835. PubMed ID: 35072473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]