These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 34436831)
21. Fabrication of free-standing multilayered graphene and poly(3,4-ethylenedioxythiophene) composite films with enhanced conductive and mechanical properties. Choi KS; Liu F; Choi JS; Seo TS Langmuir; 2010 Aug; 26(15):12902-8. PubMed ID: 20617852 [TBL] [Abstract][Full Text] [Related]
22. Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins. Zhang Z; Chen Z; Wang Y; Zhao Y Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18310-18316. PubMed ID: 32675247 [TBL] [Abstract][Full Text] [Related]
23. Printing inks of electroactive polymer PEDOT:PSS: The study of biocompatibility, stability, and electrical properties. Stříteský S; Marková A; Víteček J; Šafaříková E; Hrabal M; Kubáč L; Kubala L; Weiter M; Vala M J Biomed Mater Res A; 2018 Apr; 106(4):1121-1128. PubMed ID: 29274101 [TBL] [Abstract][Full Text] [Related]
24. Wearable Temperature Sensors with Enhanced Sensitivity by Engineering Microcrack Morphology in PEDOT:PSS-PDMS Sensors. Yu Y; Peng S; Blanloeuil P; Wu S; Wang CH ACS Appl Mater Interfaces; 2020 Aug; 12(32):36578-36588. PubMed ID: 32667193 [TBL] [Abstract][Full Text] [Related]
25. A Wearable Supercapacitor Based on Conductive PEDOT:PSS-Coated Cloth and a Sweat Electrolyte. Manjakkal L; Pullanchiyodan A; Yogeswaran N; Hosseini ES; Dahiya R Adv Mater; 2020 Jun; 32(24):e1907254. PubMed ID: 32390218 [TBL] [Abstract][Full Text] [Related]
27. Electrochemically prepared composites of graphene oxide and conducting polymers: Cytocompatibility of cardiomyocytes and neural progenitors. Maráková N; Boeva ZA; Humpolíček P; Lindfors T; Pacherník J; Kašpárková V; Radaszkiewicz KA; Capáková Z; Minařík A; Lehocký M Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110029. PubMed ID: 31546373 [TBL] [Abstract][Full Text] [Related]
28. Electroconductive cardiac patch based on bioactive PEDOT:PSS hydrogels. Sauvage E; Matta J; Dang CT; Fan J; Cruzado G; Cicoira F; Merle G J Biomed Mater Res A; 2024 Oct; 112(10):1817-1826. PubMed ID: 38689450 [TBL] [Abstract][Full Text] [Related]
29. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application. Wang S; Guan S; Wang J; Liu H; Liu T; Ma X; Cui Z J Biosci Bioeng; 2017 Jan; 123(1):116-125. PubMed ID: 27498308 [TBL] [Abstract][Full Text] [Related]
30. Universal Stretchable Conductive Cellulose/PEDOT:PSS Hybrid Films for Low Hysteresis Multifunctional Stretchable Electronics. Wibowo AF; Han JW; Kim JH; Prameswati A; Entifar SAN; Park J; Lee J; Kim S; Lim DC; Eom Y; Moon MW; Kim MS; Kim YH ACS Appl Mater Interfaces; 2023 Apr; 15(14):18134-18143. PubMed ID: 37006125 [TBL] [Abstract][Full Text] [Related]
31. Myelin Sheath-Inspired Hydrogel Electrode for Artificial Skin and Physiological Monitoring. Liu C; Wang Y; Shi S; Zheng Y; Ye Z; Liao J; Sun Q; Dang B; Shen X ACS Nano; 2024 Oct; 18(40):27420-27432. PubMed ID: 39331416 [TBL] [Abstract][Full Text] [Related]
32. Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing. Fan L; Xie J; Zheng Y; Wei D; Yao D; Zhang J; Zhang T ACS Appl Mater Interfaces; 2020 May; 12(19):22225-22236. PubMed ID: 32315157 [TBL] [Abstract][Full Text] [Related]
33. Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering. Sasaki M; Karikkineth BC; Nagamine K; Kaji H; Torimitsu K; Nishizawa M Adv Healthc Mater; 2014 Nov; 3(11):1919-27. PubMed ID: 24912988 [TBL] [Abstract][Full Text] [Related]
34. High-Stretchability, Ultralow-Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines. Shen Z; Zhang Z; Zhang N; Li J; Zhou P; Hu F; Rong Y; Lu B; Gu G Adv Mater; 2022 Aug; 34(32):e2203650. PubMed ID: 35726439 [TBL] [Abstract][Full Text] [Related]
35. PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics. Zajdel TJ; Baruch M; Méhes G; Stavrinidou E; Berggren M; Maharbiz MM; Simon DT; Ajo-Franklin CM Sci Rep; 2018 Oct; 8(1):15293. PubMed ID: 30327574 [TBL] [Abstract][Full Text] [Related]
36. Dopamine induced multiple bonding in hyaluronic acid network to construct particle-free conductive hydrogel for reliable electro-biosensing. Zeng MZ; Wei D; Ding J; Tian Y; Wu XY; Chen ZH; Wu CH; Sun J; Yin HB; Fan HS Carbohydr Polym; 2023 Feb; 302():120403. PubMed ID: 36604075 [TBL] [Abstract][Full Text] [Related]
37. Graphene composite paper synergized with micro/nanocellulose-fiber and silk fibroin for flexible strain sensor. Li J; Yang F; Liu D; Han S; Li J; Sui G Int J Biol Macromol; 2023 Jun; 240():124439. PubMed ID: 37062378 [TBL] [Abstract][Full Text] [Related]
38. Highly Stretchable, Self-Healable, Ultrasensitive Strain and Proximity Sensors Based on Skin-Inspired Conductive Film for Human Motion Monitoring. Du Y; Yu G; Dai X; Wang X; Yao B; Kong J ACS Appl Mater Interfaces; 2020 Nov; 12(46):51987-51998. PubMed ID: 33142058 [TBL] [Abstract][Full Text] [Related]
39. Self-powered strain sensing devices with wireless transmission: DIW-printed conductive hydrogel electrodes featuring stretchable and self-healing properties. Cong C; Wang R; Zhu W; Zheng X; Sun F; Wang X; Jiang F; Joo SW; Lim S; Kim SH; Li X J Colloid Interface Sci; 2025 Jan; 678(Pt B):588-598. PubMed ID: 39265331 [TBL] [Abstract][Full Text] [Related]
40. Biological response of protists Haematococcus lacustris and Euglena gracilis to conductive polymer poly (3,4-ethylenedioxythiophene) polystyrene sulfonate. Zhu J; Omura T; Wakisaka M Lett Appl Microbiol; 2021 May; 72(5):619-625. PubMed ID: 33566365 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]