These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34437062)

  • 21. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound.
    Jang IK; Bouma BE; Kang DH; Park SJ; Park SW; Seung KB; Choi KB; Shishkov M; Schlendorf K; Pomerantsev E; Houser SL; Aretz HT; Tearney GJ
    J Am Coll Cardiol; 2002 Feb; 39(4):604-9. PubMed ID: 11849858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical coherence tomography versus intravascular ultrasound in the evaluation of observer variability and reliability in the assessment of stent deployment: the OCTIVUS study.
    Magnus PC; Jayne JE; Garcia-Garcia HM; Swart M; van Es GA; Tijssen J; Kaplan AV
    Catheter Cardiovasc Interv; 2015 Aug; 86(2):229-35. PubMed ID: 25620044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using optical coherence tomography and intravascular ultrasound imaging to quantify coronary plaque cap thickness and vulnerability: a pilot study.
    Lv R; Maehara A; Matsumura M; Wang L; Wang Q; Zhang C; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    Biomed Eng Online; 2020 Nov; 19(1):90. PubMed ID: 33256759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequency-domain optical coherence tomography assessment of unprotected left main coronary artery disease-a comparison with intravascular ultrasound.
    Fujino Y; Bezerra HG; Attizzani GF; Wang W; Yamamoto H; Chamié D; Kanaya T; Mehanna E; Tahara S; Nakamura S; Costa MA
    Catheter Cardiovasc Interv; 2013 Sep; 82(3):E173-83. PubMed ID: 23359350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plaque burden can be assessed using intravascular optical coherence tomography and a dedicated automated processing algorithm: a comparison study with intravascular ultrasound.
    Gerbaud E; Weisz G; Tanaka A; Luu R; Osman HASH; Baldwin G; Coste P; Cognet L; Waxman S; Zheng H; Moses JW; Mintz GS; Akasaka T; Maehara A; Tearney GJ
    Eur Heart J Cardiovasc Imaging; 2020 Jun; 21(6):640-652. PubMed ID: 31326995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intravascular ultrasound or optical coherence tomography-defined anatomic severity and hemodynamic severity assessed by coronary physiologic indices.
    Lee JM; Choi KH; Koo BK; Zhang J; Han JK; Yang HM; Park KW; Song YB; Hahn JY; Choi SH; Gwon HC; Kim HS
    Rev Esp Cardiol (Engl Ed); 2020 Oct; 73(10):812-821. PubMed ID: 31812517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 30/80 MHz Bidirectional Dual-Frequency IVUS Feasibility Evaluated In Vivo and for Stent Imaging.
    Munding CE; Chérin E; Alves N; Goertz DE; Courtney BK; Foster FS
    Ultrasound Med Biol; 2020 Aug; 46(8):2104-2112. PubMed ID: 32473846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First Report of Edge Vascular Response at 12 Months of Magmaris, A Second-Generation Drug-Eluting Resorbable Magnesium Scaffold, Assessed by Grayscale Intravascular Ultrasound, Virtual Histology, and Optical Coherence Tomography. A Biosolve-II Trial Sub-Study.
    Hideo-Kajita A; Garcia-Garcia HM; Haude M; Joner M; Koolen J; Ince H; Abizaid A; Toelg R; Lemos PA; von Birgelen C; Christiansen EH; Wijns W; Neumann FJ; Kaiser C; Eeckhout E; Teik LS; Escaned J; Azizi V; Kuku KO; Ozaki Y; Dan K; Waksman R
    Cardiovasc Revasc Med; 2019 May; 20(5):392-398. PubMed ID: 31079817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-Time Coded Excitation Imaging Using a CMUT-Based Side Looking Array for Intravascular Ultrasound.
    Zangabad RP; Bosch JG; Mastik F; Beurskens RHSH; Henneken VA; Weekamp JW; van der Steen AFW; van Soest G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jun; 68(6):2048-2058. PubMed ID: 33502975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter-IVUS.
    Hattori K; Ozaki Y; Ismail TF; Okumura M; Naruse H; Kan S; Ishikawa M; Kawai T; Ohta M; Kawai H; Hashimoto T; Takagi Y; Ishii J; Serruys PW; Narula J
    JACC Cardiovasc Imaging; 2012 Feb; 5(2):169-77. PubMed ID: 22340823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical coherence tomography is a kid on the block: I would choose intravascular ultrasound.
    Dash D
    Indian Heart J; 2017; 69(3):407-410. PubMed ID: 28648442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display.
    Li J; Ma T; Jing J; Zhang J; Patel PM; Kirk Shung K; Zhou Q; Chen Z
    J Biomed Opt; 2013 Oct; 18(10):100502. PubMed ID: 24145701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct Comparison of Virtual-Histology Intravascular Ultrasound and Optical Coherence Tomography Imaging for Identification of Thin-Cap Fibroatheroma.
    Brown AJ; Obaid DR; Costopoulos C; Parker RA; Calvert PA; Teng Z; Hoole SP; West NE; Goddard M; Bennett MR
    Circ Cardiovasc Imaging; 2015 Oct; 8(10):e003487. PubMed ID: 26429760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visualization of plaque distribution in a curved artery: three-dimensional intravascular ultrasound imaging.
    Choi A; McPherson DD; Kim H
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):120-126. PubMed ID: 29034729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atherosclerotic plaque composition and classification identified by coronary computed tomography: assessment of computed tomography-generated plaque maps compared with virtual histology intravascular ultrasound and histology.
    Obaid DR; Calvert PA; Gopalan D; Parker RA; Hoole SP; West NE; Goddard M; Rudd JH; Bennett MR
    Circ Cardiovasc Imaging; 2013 Sep; 6(5):655-64. PubMed ID: 23960215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative precision of optical frequency domain imaging: direct comparison with frequency domain optical coherence tomography and intravascular ultrasound.
    Kobayashi Y; Kitahara H; Tanaka S; Okada K; Kimura T; Ikeno F; Yock PG; Fitzgerald PJ; Honda Y
    Cardiovasc Interv Ther; 2016 Apr; 31(2):79-88. PubMed ID: 26271203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo CT detection of lipid-rich coronary artery atherosclerotic plaques using quantitative histogram analysis: a head to head comparison with IVUS.
    Marwan M; Taher MA; El Meniawy K; Awadallah H; Pflederer T; Schuhbäck A; Ropers D; Daniel WG; Achenbach S
    Atherosclerosis; 2011 Mar; 215(1):110-5. PubMed ID: 21227419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis.
    Costopoulos C; Brown AJ; Teng Z; Hoole SP; West NE; Samady H; Bennett MR
    Int J Cardiovasc Imaging; 2016 Jan; 32(1):189-200. PubMed ID: 26153522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interstudy reproducibility of the second generation, Fourier domain optical coherence tomography in patients with coronary artery disease and comparison with intravascular ultrasound: a study applying automated contour detection.
    Jamil Z; Tearney G; Bruining N; Sihan K; van Soest G; Ligthart J; van Domburg R; Bouma B; Regar E
    Int J Cardiovasc Imaging; 2013 Jan; 29(1):39-51. PubMed ID: 22639296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative and Qualitative Coronary Plaque Assessment Using Computed Tomography Coronary Angiography: A Comparison With Intravascular Ultrasound.
    Munnur RK; Andrews J; Kataoka Y; Nerlekar N; Psaltis PJ; Nicholls SJ; Malaiapan Y; Cameron JD; Meredith IT; Seneviratne S; Wong DTL
    Heart Lung Circ; 2020 Jun; 29(6):883-893. PubMed ID: 31564511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.