These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 34437087)
1. Deep Reinforcement Learning for Combinatorial Optimization: Covering Salesman Problems. Li K; Zhang T; Wang R; Wang Y; Han Y; Wang L IEEE Trans Cybern; 2022 Dec; 52(12):13142-13155. PubMed ID: 34437087 [TBL] [Abstract][Full Text] [Related]
2. A deep reinforcement learning algorithm framework for solving multi-objective traveling salesman problem based on feature transformation. Zhao S; Gu S Neural Netw; 2024 Aug; 176():106359. PubMed ID: 38733797 [TBL] [Abstract][Full Text] [Related]
3. Memory-efficient Transformer-based network model for Traveling Salesman Problem. Yang H; Zhao M; Yuan L; Yu Y; Li Z; Gu M Neural Netw; 2023 Apr; 161():589-597. PubMed ID: 36822144 [TBL] [Abstract][Full Text] [Related]
4. An accelerated end-to-end method for solving routing problems. Zhu T; Shi X; Xu X; Cao J Neural Netw; 2023 Jul; 164():535-545. PubMed ID: 37216756 [TBL] [Abstract][Full Text] [Related]
5. Learning Improvement Heuristics for Solving Routing Problems. Wu Y; Song W; Cao Z; Zhang J; Lim A IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):5057-5069. PubMed ID: 33793405 [TBL] [Abstract][Full Text] [Related]
6. Solving Dynamic Traveling Salesman Problems With Deep Reinforcement Learning. Zhang Z; Liu H; Zhou M; Wang J IEEE Trans Neural Netw Learn Syst; 2023 Apr; 34(4):2119-2132. PubMed ID: 34520362 [TBL] [Abstract][Full Text] [Related]
7. Multiobjective Combinatorial Optimization Using a Single Deep Reinforcement Learning Model. Wang Z; Yao S; Li G; Zhang Q IEEE Trans Cybern; 2024 Mar; 54(3):1984-1996. PubMed ID: 37768801 [TBL] [Abstract][Full Text] [Related]
8. Multi-Objective Neural Evolutionary Algorithm for Combinatorial Optimization Problems. Shao Y; Lin JC; Srivastava G; Guo D; Zhang H; Yi H; Jolfaei A IEEE Trans Neural Netw Learn Syst; 2023 Apr; 34(4):2133-2143. PubMed ID: 34473629 [TBL] [Abstract][Full Text] [Related]
9. A deep reinforcement learning algorithm for the rectangular strip packing problem. Fang J; Rao Y; Shi M PLoS One; 2023; 18(3):e0282598. PubMed ID: 36928505 [TBL] [Abstract][Full Text] [Related]
10. Weak Human Preference Supervision for Deep Reinforcement Learning. Cao Z; Wong K; Lin CT IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5369-5378. PubMed ID: 34101604 [TBL] [Abstract][Full Text] [Related]
11. Combining STDP and binary networks for reinforcement learning from images and sparse rewards. Chevtchenko SF; Ludermir TB Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362 [TBL] [Abstract][Full Text] [Related]
12. Dynamic graph Conv-LSTM model with dynamic positional encoding for the large-scale traveling salesman problem. Wang Y; Chen Z Math Biosci Eng; 2022 Jul; 19(10):9730-9748. PubMed ID: 36031965 [TBL] [Abstract][Full Text] [Related]
13. Deep Reinforcement Learning for Multiobjective Optimization. Li K; Zhang T; Wang R IEEE Trans Cybern; 2021 Jun; 51(6):3103-3114. PubMed ID: 32191907 [TBL] [Abstract][Full Text] [Related]
14. A differentiable approach to the maximum independent set problem using dataless neural networks. Alkhouri IR; Atia GK; Velasquez A Neural Netw; 2022 Nov; 155():168-176. PubMed ID: 36057182 [TBL] [Abstract][Full Text] [Related]
15. Active learning of causal structures with deep reinforcement learning. Amirinezhad A; Salehkaleybar S; Hashemi M Neural Netw; 2022 Oct; 154():22-30. PubMed ID: 35843011 [TBL] [Abstract][Full Text] [Related]
16. A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis. Wu Z; Jiang H; Liu S; Wang R ISA Trans; 2022 Oct; 129(Pt B):505-524. PubMed ID: 35272840 [TBL] [Abstract][Full Text] [Related]
17. Target Tracking Control of a Biomimetic Underwater Vehicle Through Deep Reinforcement Learning. Wang Y; Tang C; Wang S; Cheng L; Wang R; Tan M; Hou Z IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3741-3752. PubMed ID: 33560993 [TBL] [Abstract][Full Text] [Related]
18. Chemical-protein interaction extraction via contextualized word representations and multihead attention. Zhang Y; Lin H; Yang Z; Wang J; Sun Y Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31125403 [TBL] [Abstract][Full Text] [Related]
19. Speeding Task Allocation Search for Reconfigurations in Adaptive Distributed Embedded Systems Using Deep Reinforcement Learning. Rotaeche R; Ballesteros A; Proenza J Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617145 [TBL] [Abstract][Full Text] [Related]
20. Deep Reinforcement Learning for Traffic Signal Control Model and Adaptation Study. Tan J; Yuan Q; Guo W; Xie N; Liu F; Wei J; Zhang X Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]