BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34437455)

  • 1. Human-Relevant Sensitivity of iPSC-Derived Human Motor Neurons to BoNT/A1 and B1.
    Schenke M; Prause HC; Bergforth W; Przykopanski A; Rummel A; Klawonn F; Seeger B
    Toxins (Basel); 2021 Aug; 13(8):. PubMed ID: 34437455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Motor Neurons Differentiated from Human Induced Pluripotent Stem Cells for the Use in Cell-Based Botulinum Neurotoxin Activity Assays.
    Schenke M; Schjeide BM; Püschel GP; Seeger B
    Toxins (Basel); 2020 Apr; 12(5):. PubMed ID: 32344847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of ELISA as endpoint in neuronal cell-based assay for BoNT detection using hiPSC derived neurons.
    Pellett S; Tepp WH; Johnson EA; Sesardic D
    J Pharmacol Toxicol Methods; 2017 Nov; 88(Pt 1):1-6. PubMed ID: 28465161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and Characterization of the Novel Botulinum Neurotoxin A Subtype 6.
    Moritz MS; Tepp WH; Bradshaw M; Johnson EA; Pellett S
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30355669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of botulinum neurotoxin A subtypes 1 through 5 by investigation of activities in mice, in neuronal cell cultures, and in vitro.
    Whitemarsh RC; Tepp WH; Bradshaw M; Lin G; Pier CL; Scherf JM; Johnson EA; Pellett S
    Infect Immun; 2013 Oct; 81(10):3894-902. PubMed ID: 23918782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Split luciferase-based assay to detect botulinum neurotoxins using hiPSC-derived motor neurons.
    Cotter L; Yu F; Roqueviere S; Duchesne de Lamotte J; Krupp J; Dong M; Nicoleau C
    Commun Biol; 2023 Jan; 6(1):122. PubMed ID: 36717690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Induced Pluripotent Stem Cell Derived Neuronal Cells Cultured on Chemically-Defined Hydrogels for Sensitive In Vitro Detection of Botulinum Neurotoxin.
    Pellett S; Schwartz MP; Tepp WH; Josephson R; Scherf JM; Pier CL; Thomson JA; Murphy WL; Johnson EA
    Sci Rep; 2015 Sep; 5():14566. PubMed ID: 26411797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of extracellular and intracellular potency of botulinum neurotoxins.
    Cai F; Adrion CB; Keller JE
    Infect Immun; 2006 Oct; 74(10):5617-24. PubMed ID: 16988237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro potency determination of botulinum neurotoxin serotype A based on its receptor-binding and proteolytic characteristics.
    Behrensdorf-Nicol HA; Wild E; Bonifas U; Klimek J; Hanschmann KM; Krämer B; Kegel B
    Toxicol In Vitro; 2018 Dec; 53():80-88. PubMed ID: 30016653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Botulinum neurotoxins A, B, C, E, and F preferentially enter cultured human motor neurons compared to other cultured human neuronal populations.
    Pellett S; Tepp WH; Johnson EA
    FEBS Lett; 2019 Sep; 593(18):2675-2685. PubMed ID: 31240706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SiMa Cells for a Serotype Specific and Sensitive Cell-Based Neutralization Test for Botulinum Toxin A and E.
    Bak N; Rajagopal S; Stickings P; Sesardic D
    Toxins (Basel); 2017 Jul; 9(7):. PubMed ID: 28726719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and Characterization of Botulinum Neurotoxin FA from a Genetically Modified Clostridium botulinum Strain.
    Pellett S; Tepp WH; Bradshaw M; Kalb SR; Dykes JK; Lin G; Nawrocki EM; Pier CL; Barr JR; Maslanka SE; Johnson EA
    mSphere; 2016; 1(1):. PubMed ID: 27303710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clostridium botulinum neurotoxins act with a wide range of potencies on SH-SY5Y human neuroblastoma cells.
    Purkiss JR; Friis LM; Doward S; Quinn CP
    Neurotoxicology; 2001 Aug; 22(4):447-53. PubMed ID: 11577803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmentation of VAMP-catalytic activity of botulinum neurotoxin serotype B does not result in increased potency in physiological systems.
    Elliott M; Maignel J; Liu SM; Favre-Guilmard C; Mir I; Farrow P; Hornby F; Marlin S; Palan S; Beard M; Krupp J
    PLoS One; 2017; 12(10):e0185628. PubMed ID: 28982136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microscale neuron and Schwann cell coculture model for increasing detection sensitivity of botulinum neurotoxin type A.
    Hong WS; Young EW; Tepp WH; Johnson EA; Beebe DJ
    Toxicol Sci; 2013 Jul; 134(1):64-72. PubMed ID: 23564642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatase Inhibitors Function as Novel, Broad Spectrum Botulinum Neurotoxin Antagonists in Mouse and Human Embryonic Stem Cell-Derived Motor Neuron-Based Assays.
    Kiris E; Nuss JE; Stanford SM; Wanner LM; Cazares L; Maestre MF; Du HT; Gomba GY; Burnett JC; Gussio R; Bottini N; Panchal RG; Kane CD; Tessarollo L; Bavari S
    PLoS One; 2015; 10(6):e0129264. PubMed ID: 26061731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate cleavage and duration of action of botulinum neurotoxin type FA ("H, HA").
    Pellett S; Tepp WH; Lin G; Johnson EA
    Toxicon; 2018 Jun; 147():38-46. PubMed ID: 29273248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical Analysis of Neuronal Cell and the Mouse Bioassay for Detection of Botulinum Neurotoxins.
    Pellett S; Tepp WH; Johnson EA
    Toxins (Basel); 2019 Dec; 11(12):. PubMed ID: 31817843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of a novel subtype a3 botulinum neurotoxin.
    Tepp WH; Lin G; Johnson EA
    Appl Environ Microbiol; 2012 May; 78(9):3108-13. PubMed ID: 22367089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model for studying Clostridium botulinum neurotoxin using differentiated motor neuron-like NG108-15 cells.
    Whitemarsh RC; Pier CL; Tepp WH; Pellett S; Johnson EA
    Biochem Biophys Res Commun; 2012 Oct; 427(2):426-30. PubMed ID: 23000406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.