These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 34437621)
1. Rosetta:MSF:NN: Boosting performance of multi-state computational protein design with a neural network. Nazet J; Lang E; Merkl R PLoS One; 2021; 16(8):e0256691. PubMed ID: 34437621 [TBL] [Abstract][Full Text] [Related]
2. Rosetta:MSF: a modular framework for multi-state computational protein design. Löffler P; Schmitz S; Hupfeld E; Sterner R; Merkl R PLoS Comput Biol; 2017 Jun; 13(6):e1005600. PubMed ID: 28604768 [TBL] [Abstract][Full Text] [Related]
3. Boosted neural networks scoring functions for accurate ligand docking and ranking. Ashtawy HM; Mahapatra NR J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922 [TBL] [Abstract][Full Text] [Related]
4. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes. Ashtawy HM; Mahapatra NR BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685 [TBL] [Abstract][Full Text] [Related]
5. A Rosetta-based protein design protocol converging to natural sequences. Sormani G; Harteveld Z; Rosset S; Correia B; Laio A J Chem Phys; 2021 Feb; 154(7):074114. PubMed ID: 33607903 [TBL] [Abstract][Full Text] [Related]
6. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design. Smith CA; Kortemme T PLoS One; 2011; 6(7):e20451. PubMed ID: 21789164 [TBL] [Abstract][Full Text] [Related]
7. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M; Yanover C Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998 [TBL] [Abstract][Full Text] [Related]
8. BBK* (Branch and Bound Over K*): A Provable and Efficient Ensemble-Based Protein Design Algorithm to Optimize Stability and Binding Affinity Over Large Sequence Spaces. Ojewole AA; Jou JD; Fowler VG; Donald BR J Comput Biol; 2018 Jul; 25(7):726-739. PubMed ID: 29641249 [TBL] [Abstract][Full Text] [Related]
9. Protein sequence design by conformational landscape optimization. Norn C; Wicky BIM; Juergens D; Liu S; Kim D; Tischer D; Koepnick B; Anishchenko I; ; Baker D; Ovchinnikov S Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33712545 [TBL] [Abstract][Full Text] [Related]
10. Iterated local search with partition crossover for computational protein design. Beuvin F; de Givry S; Schiex T; Verel S; Simoncini D Proteins; 2021 Nov; 89(11):1522-1529. PubMed ID: 34228826 [TBL] [Abstract][Full Text] [Related]
11. Rosetta design with co-evolutionary information retains protein function. Schmitz S; Ertelt M; Merkl R; Meiler J PLoS Comput Biol; 2021 Jan; 17(1):e1008568. PubMed ID: 33465067 [TBL] [Abstract][Full Text] [Related]
12. Novel, provable algorithms for efficient ensemble-based computational protein design and their application to the redesign of the c-Raf-RBD:KRas protein-protein interface. Lowegard AU; Frenkel MS; Holt GT; Jou JD; Ojewole AA; Donald BR PLoS Comput Biol; 2020 Jun; 16(6):e1007447. PubMed ID: 32511232 [TBL] [Abstract][Full Text] [Related]
13. A computational method for the design of nested proteins by loop-directed domain insertion. Blacklock KM; Yang L; Mulligan VK; Khare SD Proteins; 2018 Mar; 86(3):354-369. PubMed ID: 29250820 [TBL] [Abstract][Full Text] [Related]
14. Heuristic energy landscape paving for protein folding problem in the three-dimensional HP lattice model. Liu J; Li G; Yu J; Yao Y Comput Biol Chem; 2012 Jun; 38():17-26. PubMed ID: 22551826 [TBL] [Abstract][Full Text] [Related]
15. Integration of the Rosetta suite with the python software stack via reproducible packaging and core programming interfaces for distributed simulation. Ford AS; Weitzner BD; Bahl CD Protein Sci; 2020 Jan; 29(1):43-51. PubMed ID: 31495995 [TBL] [Abstract][Full Text] [Related]