BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34437751)

  • 1. Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5-ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase.
    Wohlers K; Wirtz A; Reiter A; Oldiges M; Baumgart M; Bott M
    Microb Biotechnol; 2021 Nov; 14(6):2592-2604. PubMed ID: 34437751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of the alternative sweetener 5-ketofructose from sucrose by fructose dehydrogenase and invertase producing Gluconobacter strains.
    Hoffmann JJ; Hövels M; Kosciow K; Deppenmeier U
    J Biotechnol; 2020 Jan; 307():164-174. PubMed ID: 31704125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of 5-ketofructose from fructose or sucrose using genetically modified Gluconobacter oxydans strains.
    Siemen A; Kosciow K; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1699-1710. PubMed ID: 29279957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel plasmid-free Gluconobacter oxydans strains for production of the natural sweetener 5-ketofructose.
    Battling S; Wohlers K; Igwe C; Kranz A; Pesch M; Wirtz A; Baumgart M; Büchs J; Bott M
    Microb Cell Fact; 2020 Mar; 19(1):54. PubMed ID: 32131833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans.
    Herweg E; Schöpping M; Rohr K; Siemen A; Frank O; Hofmann T; Deppenmeier U; Büchs J
    Bioresour Technol; 2018 Jul; 259():164-172. PubMed ID: 29550669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of the low-calorie sugar substitute 5-ketofructose by different bacteria.
    Schiessl J; Kosciow K; Garschagen LS; Hoffmann JJ; Heymuth J; Franke T; Deppenmeier U
    Appl Microbiol Biotechnol; 2021 Mar; 105(6):2441-2453. PubMed ID: 33616697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260.
    Kawai S; Goda-Tsutsumi M; Yakushi T; Kano K; Matsushita K
    Appl Environ Microbiol; 2013 Mar; 79(5):1654-60. PubMed ID: 23275508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient fermentation of 5-keto-D-fructose with Gluconobacter oxydans at different scales.
    Battling S; Engel T; Herweg E; Niehoff PJ; Pesch M; Scholand T; Schöpping M; Sonntag N; Büchs J
    Microb Cell Fact; 2022 Dec; 21(1):255. PubMed ID: 36496372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering to expand the substrate spectrum of Pseudomonas putida toward sucrose.
    Löwe H; Schmauder L; Hobmeier K; Kremling A; Pflüger-Grau K
    Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28349670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The anoxic electrode-driven fructose catabolism of Pseudomonas putida KT2440.
    Nguyen AV; Lai B; Adrian L; Krömer JO
    Microb Biotechnol; 2021 Jul; 14(4):1784-1796. PubMed ID: 34115443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440.
    Bentley GJ; Narayanan N; Jha RK; Salvachúa D; Elmore JR; Peabody GL; Black BA; Ramirez K; De Capite A; Michener WE; Werner AZ; Klingeman DM; Schindel HS; Nelson R; Foust L; Guss AM; Dale T; Johnson CW; Beckham GT
    Metab Eng; 2020 May; 59():64-75. PubMed ID: 31931111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory.
    Dammeyer T; Steinwand M; Krüger SC; Dübel S; Hust M; Timmis KN
    Microb Cell Fact; 2011 Feb; 10():11. PubMed ID: 21338491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid.
    Li J; Ye BC
    Bioresour Technol; 2021 Jan; 319():124239. PubMed ID: 33254462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-Keto-D-Fructose, a Natural Diketone and Potential Sugar Substitute, Significantly Reduces the Viability of Prokaryotic and Eukaryotic Cells.
    Hövels M; Gallala N; Keriakes SL; König AP; Schiessl J; Laporte T; Kosciow K; Deppenmeier U
    Front Microbiol; 2022; 13():935062. PubMed ID: 35801101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Engineering of
    Benninghaus L; Walter T; Mindt M; Risse JM; Wendisch VF
    J Agric Food Chem; 2021 Sep; 69(34):9849-9858. PubMed ID: 34465093
    [No Abstract]   [Full Text] [Related]  

  • 16. Development of a novel defined minimal medium for Gluconobacter oxydans 621H by systematic investigation of metabolic demands.
    Battling S; Pastoors J; Deitert A; Götzen T; Hartmann L; Schröder E; Yordanov S; Büchs J
    J Biol Eng; 2022 Nov; 16(1):31. PubMed ID: 36414992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 5-Ketofructose Reductase of
    Nguyen TM; Goto M; Noda S; Matsutani M; Hodoya Y; Kataoka N; Adachi O; Matsushita K; Yakushi T
    J Bacteriol; 2021 Sep; 203(19):e0055820. PubMed ID: 34309403
    [No Abstract]   [Full Text] [Related]  

  • 18. A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440.
    Zhang Y; Liu H; Liu Y; Huo K; Wang S; Liu R; Yang C
    Int J Biol Macromol; 2021 Nov; 191():608-617. PubMed ID: 34582907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering
    Wang Y; Zheng J; Xue Y; Yu B
    J Agric Food Chem; 2024 Mar; 72(12):6500-6508. PubMed ID: 38470347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.