BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34437903)

  • 1. Role of substrate recognition in modulating strigolactone receptor selectivity in witchweed.
    Chen J; White A; Nelson DC; Shukla D
    J Biol Chem; 2021 Oct; 297(4):101092. PubMed ID: 34437903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation Mechanism of Strigolactone Receptors and Its Impact on Ligand Selectivity between Host and Parasitic Plants.
    Chen J; Nelson DC; Shukla D
    J Chem Inf Model; 2022 Apr; 62(7):1712-1722. PubMed ID: 35192364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Studies of Potential Binding Pocket Residues Reveal the Molecular Basis of ShHTL Receptors in the Perception of GR24 in
    Pang Z; Zhang X; Ma F; Liu J; Zhang H; Wang J; Wen X; Xi Z
    J Agric Food Chem; 2020 Nov; 68(45):12729-12737. PubMed ID: 33125848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Signaling Partner Association to Strigolactone Receptor Selectivity.
    Chen J; Dean TJ; Shukla D
    J Phys Chem B; 2024 Jan; 128(3):698-705. PubMed ID: 38194306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga.
    Toh S; Holbrook-Smith D; Stogios PJ; Onopriyenko O; Lumba S; Tsuchiya Y; Savchenko A; McCourt P
    Science; 2015 Oct; 350(6257):203-7. PubMed ID: 26450211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for high ligand sensitivity and selectivity of strigolactone receptors in Striga.
    Wang Y; Yao R; Du X; Guo L; Chen L; Xie D; Smith SM
    Plant Physiol; 2021 Apr; 185(4):1411-1428. PubMed ID: 33793945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of histidine covalent modification on strigolactone receptor activation and selectivity.
    Chen J; Shukla D
    Biophys J; 2023 Apr; 122(7):1219-1228. PubMed ID: 36798027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of HTL and D14 proteins reveals the basis for ligand selectivity in Striga.
    Xu Y; Miyakawa T; Nosaki S; Nakamura A; Lyu Y; Nakamura H; Ohto U; Ishida H; Shimizu T; Asami T; Tanokura M
    Nat Commun; 2018 Sep; 9(1):3947. PubMed ID: 30258184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PARASITIC PLANTS. Probing strigolactone receptors in Striga hermonthica with fluorescence.
    Tsuchiya Y; Yoshimura M; Sato Y; Kuwata K; Toh S; Holbrook-Smith D; Zhang H; McCourt P; Itami K; Kinoshita T; Hagihara S
    Science; 2015 Aug; 349(6250):864-8. PubMed ID: 26293962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Witch Weed Is Able To Detect a Wide Range of Chemicals from Plants through Its Sensitive and Specific Receptors: The Strigolactone Story Updated.
    Molinaro A
    Chembiochem; 2016 Jan; 17(2):129-31. PubMed ID: 26581190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for specific inhibition of the highly sensitive ShHTL7 receptor.
    Shahul Hameed U; Haider I; Jamil M; Kountche BA; Guo X; Zarban RA; Kim D; Al-Babili S; Arold ST
    EMBO Rep; 2018 Sep; 19(9):. PubMed ID: 30021834
    [No Abstract]   [Full Text] [Related]  

  • 12. Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica.
    Xu Y; Miyakawa T; Nakamura H; Nakamura A; Imamura Y; Asami T; Tanokura M
    Sci Rep; 2016 Aug; 6():31386. PubMed ID: 27507097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conferring resistance to parasitic witchweed by shifting strigolactone biosynthesis.
    Sharifi R; Chen J; Sun Z; Chen J
    Trends Parasitol; 2023 Jul; 39(7):496-498. PubMed ID: 37173197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure and biochemical characterization of Striga hermonthica HYPO-SENSITIVE TO LIGHT 8 (ShHTL8) in strigolactone signaling pathway.
    Zhang Y; Wang D; Shen Y; Xi Z
    Biochem Biophys Res Commun; 2020 Mar; 523(4):1040-1045. PubMed ID: 31973817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones.
    Chesterfield RJ; Whitfield JH; Pouvreau B; Cao D; Alexandrov K; Beveridge CA; Vickers CE
    ACS Synth Biol; 2020 Aug; 9(8):2107-2118. PubMed ID: 32786922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Striga hermonthica MAX2 restores branching but not the Very Low Fluence Response in the Arabidopsis thaliana max2 mutant.
    Liu Q; Zhang Y; Matusova R; Charnikhova T; Amini M; Jamil M; Fernandez-Aparicio M; Huang K; Timko MP; Westwood JH; Ruyter-Spira C; van der Krol S; Bouwmeester HJ
    New Phytol; 2014 Apr; 202(2):531-541. PubMed ID: 24483232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Basis for Enhanced Strigolactone Sensitivity in KAI2 Triple Mutant.
    Sobecks BL; Chen J; Shukla D
    bioRxiv; 2023 Jan; ():. PubMed ID: 36712135
    [No Abstract]   [Full Text] [Related]  

  • 18. Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production.
    Jamil M; Rodenburg J; Charnikhova T; Bouwmeester HJ
    New Phytol; 2011 Dec; 192(4):964-975. PubMed ID: 21883233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A femtomolar-range suicide germination stimulant for the parasitic plant
    Uraguchi D; Kuwata K; Hijikata Y; Yamaguchi R; Imaizumi H; Am S; Rakers C; Mori N; Akiyama K; Irle S; McCourt P; Kinoshita T; Ooi T; Tsuchiya Y
    Science; 2018 Dec; 362(6420):1301-1305. PubMed ID: 30545887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-molecule antagonists of germination of the parasitic plant Striga hermonthica.
    Holbrook-Smith D; Toh S; Tsuchiya Y; McCourt P
    Nat Chem Biol; 2016 Sep; 12(9):724-9. PubMed ID: 27428512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.