These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 34438074)
21. Interaction of a Densovirus with Glycans of the Peritrophic Matrix Mediates Oral Infection of the Lepidopteran Pest Pigeyre L; Schatz M; Ravallec M; Gasmi L; Nègre N; Clouet C; Seveno M; El Koulali K; Decourcelle M; Guerardel Y; Cot D; Dupressoir T; Gosselin-Grenet AS; Ogliastro M Viruses; 2019 Sep; 11(9):. PubMed ID: 31533310 [TBL] [Abstract][Full Text] [Related]
22. Domain structure and expression along the midgut and carcass of peritrophins and cuticle proteins analogous to peritrophins in insects with and without peritrophic membrane. Dias RO; Cardoso C; Leal CS; Ribeiro AF; Ferreira C; Terra WR J Insect Physiol; 2019 Apr; 114():1-9. PubMed ID: 30735683 [TBL] [Abstract][Full Text] [Related]
23. Proteomic Analysis of the Peritrophic Matrix from the Midgut of Third Instar Larvae, Musca domestica. Wang Y; Xiu JF; Cheng JZ; Luo M; Zhao P; Shang XL; Wang T; Wu JW Biomed Environ Sci; 2016 Jan; 29(1):56-65. PubMed ID: 26822513 [TBL] [Abstract][Full Text] [Related]
24. Digestion-related proteins in the tobacco hornworm, Manduca sexta. Miao Z; Cao X; Jiang H Insect Biochem Mol Biol; 2020 Nov; 126():103457. PubMed ID: 32860882 [TBL] [Abstract][Full Text] [Related]
25. Effects of a Reserve Protein on Oliveira CT; Machado SW; Bezerra CDS; Cardoso MH; Franco OL; Silva CP; Alves DG; Rios C; Macedo MLR Molecules; 2020 May; 25(9):. PubMed ID: 32397098 [TBL] [Abstract][Full Text] [Related]
26. Proteomic analysis of peritrophic membrane (PM) from the midgut of fifth-instar larvae, Bombyx mori. Hu X; Chen L; Xiang X; Yang R; Yu S; Wu X Mol Biol Rep; 2012 Apr; 39(4):3427-34. PubMed ID: 21725639 [TBL] [Abstract][Full Text] [Related]
27. Control of the release of digestive enzymes in the larvae of the fall armyworm, Spodoptera frugiperda. Lwalaba D; Hoffmann KH; Woodring J Arch Insect Biochem Physiol; 2010 Jan; 73(1):14-29. PubMed ID: 19771560 [TBL] [Abstract][Full Text] [Related]
28. The digestive system of the "stick bug" Cladomorphus phyllinus (Phasmida, Phasmatidae): a morphological, physiological and biochemical analysis. Monteiro EC; Tamaki FK; Terra WR; Ribeiro AF Arthropod Struct Dev; 2014 Mar; 43(2):123-34. PubMed ID: 24374178 [TBL] [Abstract][Full Text] [Related]
29. Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Wang P; Li G; Granados RR Insect Biochem Mol Biol; 2004 Mar; 34(3):215-27. PubMed ID: 14871618 [TBL] [Abstract][Full Text] [Related]
30. Insect midgut carboxypeptidases with emphasis on S10 hemipteran and M14 lepidopteran carboxypeptidases. Ferreira C; Rebola KG; Cardoso C; Bragatto I; Ribeiro AF; Terra WR Insect Mol Biol; 2015 Apr; 24(2):222-39. PubMed ID: 25488368 [TBL] [Abstract][Full Text] [Related]
31. In vitro and in vivo application of RNA interference for targeting genes involved in peritrophic matrix synthesis in a lepidopteran system. Toprak U; Baldwin D; Erlandson M; Gillott C; Harris S; Hegedus DD Insect Sci; 2013 Feb; 20(1):92-100. PubMed ID: 23955829 [TBL] [Abstract][Full Text] [Related]
32. Shotgun analysis on the peritrophic membrane of the silkworm Bombyx mori. Zhong X; Zhang L; Zou Y; Yi Q; Zhao P; Xia Q; Xiang Z BMB Rep; 2012 Nov; 45(11):665-70. PubMed ID: 23187007 [TBL] [Abstract][Full Text] [Related]
33. General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor. Brioschi D; Nadalini LD; Bengtson MH; Sogayar MC; Moura DS; Silva-Filho MC Insect Biochem Mol Biol; 2007 Dec; 37(12):1283-90. PubMed ID: 17967347 [TBL] [Abstract][Full Text] [Related]
34. Biochemical characterization of three midgut chitin deacetylases of the Lepidopteran insect Bombyx mori. Liu L; Qu M; Liu T; Chen Q; Guo X; Yang J; Yang Q J Insect Physiol; 2019; 113():42-48. PubMed ID: 30682338 [TBL] [Abstract][Full Text] [Related]
35. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors. Paulillo LC; Lopes AR; Cristofoletti PT; Parra JR; Terra WR; Silva-Filho MC J Econ Entomol; 2000 Jun; 93(3):892-6. PubMed ID: 10902346 [TBL] [Abstract][Full Text] [Related]
36. Growth inhibition of Spodoptera frugiperda larvae by camptothecin correlates with alteration of the structures and gene expression profiles of the midgut. Shu B; Zou Y; Yu H; Zhang W; Li X; Cao L; Lin J BMC Genomics; 2021 May; 22(1):391. PubMed ID: 34039281 [TBL] [Abstract][Full Text] [Related]
37. Spatial and temporal synthesis of Mamestra configurata peritrophic matrix through a larval stadium. Toprak U; Hegedus DD; Baldwin D; Coutu C; Erlandson M Insect Biochem Mol Biol; 2014 Nov; 54():89-97. PubMed ID: 25240619 [TBL] [Abstract][Full Text] [Related]
38. Spatial distribution of digestive proteinases in the midgut of the Pacific white shrimp (Litopenaeus vannamei) indicates the existence of endo-ectoperitrophic circulation in Crustacea. Alexandre D; Ozório RA; Derner RB; Fracalossi DM; Oliveira GB; Samuels RI; Terra WR; Silva CP Comp Biochem Physiol B Biochem Mol Biol; 2014; 172-173():90-5. PubMed ID: 24813823 [TBL] [Abstract][Full Text] [Related]
39. Peritrophic membrane protein in the larval stingless bee Melipona quadrifasciata anthidioides: immunolocalization of secretory sites. Marques-Silva S; Serrão JE; Mezêncio JM Acta Histochem; 2005; 107(1):23-30. PubMed ID: 15866283 [TBL] [Abstract][Full Text] [Related]