These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34438374)

  • 1. Thermoelectric effect in a single molecular junction with a vibrational mode.
    Zhang MM; Ding GH; Dong B
    J Phys Condens Matter; 2021 Sep; 33(47):. PubMed ID: 34438374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced thermoelectric properties in anthracene molecular device with graphene electrodes: the role of phononic thermal conductance.
    Ramezani Akbarabadi S; Rahimpour Soleimani H; Golsanamlou Z; Bagheri Tagani M
    Sci Rep; 2020 Jul; 10(1):10922. PubMed ID: 32616835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric efficiency of molecular junctions.
    Perroni CA; Ninno D; Cataudella V
    J Phys Condens Matter; 2016 Sep; 28(37):373001. PubMed ID: 27420149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligoyne Molecular Junctions for Efficient Room Temperature Thermoelectric Power Generation.
    Sadeghi H; Sangtarash S; Lambert CJ
    Nano Lett; 2015 Nov; 15(11):7467-72. PubMed ID: 26458053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoelectric efficiency of organometallic complex wires via quantum resonance effect and long-range electric transport property.
    Nakamura H; Ohto T; Ishida T; Asai Y
    J Am Chem Soc; 2013 Nov; 135(44):16545-52. PubMed ID: 24102142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High thermopower of mechanically stretched single-molecule junctions.
    Tsutsui M; Morikawa T; He Y; Arima A; Taniguchi M
    Sci Rep; 2015 Jun; 5():11519. PubMed ID: 26112999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the thermopower of C60 molecular junctions.
    Evangeli C; Gillemot K; Leary E; González MT; Rubio-Bollinger G; Lambert CJ; Agraït N
    Nano Lett; 2013 May; 13(5):2141-5. PubMed ID: 23544957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the thermoelectric performance of graphene nano-ribbons without degrading the electronic properties.
    Tran VT; Saint-Martin J; Dollfus P; Volz S
    Sci Rep; 2017 May; 7(1):2313. PubMed ID: 28539598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency.
    Tsaousidou M; Triberis GP
    J Phys Condens Matter; 2010 Sep; 22(35):355304. PubMed ID: 21403283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Coulomb interaction in thermoelectric effects of an Aharonov-Bohm interferometer.
    Liu YS; Zhang DB; Yang XF; Feng JF
    Nanotechnology; 2011 Jun; 22(22):225201. PubMed ID: 21454941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pure spin current and phonon thermoelectric transport in a triangulene-based molecular junction.
    Wang Q; Li J; Nie Y; Xu F; Yu Y; Wang B
    Phys Chem Chem Phys; 2018 Jun; 20(23):15736-15745. PubMed ID: 29856448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Length-dependent thermopower of highly conducting Au-C bonded single molecule junctions.
    Widawsky JR; Chen W; Vázquez H; Kim T; Breslow R; Hybertsen MS; Venkataraman L
    Nano Lett; 2013 Jun; 13(6):2889-94. PubMed ID: 23682792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High cross-plane thermoelectric performance of metallo-porphyrin molecular junctions.
    Noori M; Sadeghi H; Al-Galiby Q; Bailey SWD; Lambert CJ
    Phys Chem Chem Phys; 2017 Jul; 19(26):17356-17359. PubMed ID: 28650012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical tuning of conductance and thermopower in helicene molecular junctions.
    Vacek J; Chocholoušová JV; Stará IG; Starý I; Dubi Y
    Nanoscale; 2015 May; 7(19):8793-802. PubMed ID: 25905658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of the thermoelectric figure of merit in DNA-like systems induced by Fano and Dicke effects.
    Fu HH; Gu L; Wu DD; Zhang ZQ
    Phys Chem Chem Phys; 2015 Apr; 17(16):11077-87. PubMed ID: 25826287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelectricity at the molecular scale: a large Seebeck effect in endohedral metallofullerenes.
    Lee SK; Buerkle M; Yamada R; Asai Y; Tada H
    Nanoscale; 2015 Dec; 7(48):20497-502. PubMed ID: 26583505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical Conductance and Thermopower of β-Substituted Porphyrin Molecular Junctions─Synthesis and Transport.
    Xu H; Fan H; Luan Y; Yan S; Martin L; Miao R; Pauly F; Meyhofer E; Reddy P; Linke H; Wärnmark K
    J Am Chem Soc; 2023 Nov; 145(43):23541-23555. PubMed ID: 37874166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical and thermal transport throughα-T3NIS junction.
    Islam M; Kapri P
    J Phys Condens Matter; 2022 Dec; 35(10):. PubMed ID: 36549003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking break-junction techniques: electric and thermoelectric characterization of naphthalenophanes.
    Hurtado-Gallego J; van der Poel S; Blaschke M; Gallego A; Hsu C; López-Nebreda R; Mayor M; Pauly F; Agraït N; van der Zant HSJ
    Nanoscale; 2024 Jun; 16(22):10751-10759. PubMed ID: 38747099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying the lifetime of charge and heat carriers due to intrinsic scattering mechanisms in FeVSb half-Heusler thermoelectric.
    Shastri SS; Pandey SK
    J Phys Condens Matter; 2021 Jun; 33(26):. PubMed ID: 33887717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.