These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34438958)

  • 1. Antituberculosis Targeted Drug Delivery as a Potential Future Treatment Approach.
    Mazlan MKN; Mohd Tazizi MHD; Ahmad R; Noh MAA; Bakhtiar A; Wahab HA; Mohd Gazzali A
    Antibiotics (Basel); 2021 Jul; 10(8):. PubMed ID: 34438958
    [No Abstract]   [Full Text] [Related]  

  • 2. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of new targeting agents against GAPDH receptor for antituberculosis drug delivery.
    Noh MAA; Fazalul Rahiman SS; A Wahab H; Mohd Gazzali A
    J Basic Clin Physiol Pharmacol; 2021 Jun; 32(4):715-722. PubMed ID: 34214294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Management of adverse effects with antituberculosis chemotherapy].
    Tsuyuguchi K; Wada M
    Kekkaku; 2011 Feb; 86(2):87-99. PubMed ID: 21404653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycobacterial DNA Replication as a Target for Antituberculosis Drug Discovery.
    Płocinska R; Korycka-Machala M; Plocinski P; Dziadek J
    Curr Top Med Chem; 2017 Jun; 17(19):2129-2142. PubMed ID: 28137234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of efflux pump inhibitors in antituberculosis therapy.
    Song L; Wu X
    Int J Antimicrob Agents; 2016 Jun; 47(6):421-9. PubMed ID: 27211826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Macrophage Infection Model to Predict Drug Efficacy Against Mycobacterium Tuberculosis.
    Schaaf K; Hayley V; Speer A; Wolschendorf F; Niederweis M; Kutsch O; Sun J
    Assay Drug Dev Technol; 2016 Aug; 14(6):345-54. PubMed ID: 27327048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead.
    Grotz E; Tateosian N; Amiano N; Cagel M; Bernabeu E; Chiappetta DA; Moretton MA
    Pharm Res; 2018 Sep; 35(11):213. PubMed ID: 30238168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel and revisited approaches in antituberculosis drug discovery.
    Herrmann J; Rybniker J; Müller R
    Curr Opin Biotechnol; 2017 Dec; 48():94-101. PubMed ID: 28427007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Prospects for development of new antituberculous drugs].
    Tomioka H
    Kekkaku; 2002 Aug; 77(8):573-84. PubMed ID: 12235850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M.tuberculosis killing efficiency.
    Pi J; Shen L; Shen H; Yang E; Wang W; Wang R; Huang D; Lee BS; Hu C; Chen C; Jin H; Cai J; Zeng G; Chen ZW
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109777. PubMed ID: 31349400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Molecular Simulation in the Discovery of Antituberculosis Drugs: A Review.
    Hu JP; Wu ZX; Xie T; Liu XY; Yan X; Sun X; Liu W; Liang L; He G; Gan Y; Gou XJ; Shi Z; Zou Q; Wan H; Shi HB; Chang S
    Protein Pept Lett; 2019; 26(9):648-663. PubMed ID: 31218945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery.
    de Wet TJ; Warner DF; Mizrahi V
    Acc Chem Res; 2019 Aug; 52(8):2340-2348. PubMed ID: 31361123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New approaches to tuberculosis--novel drugs based on drug targets related to toll-like receptors in macrophages.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4404-17. PubMed ID: 24245765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent therapeutic approaches for the management of tuberculosis: Challenges and opportunities.
    Patil K; Bagade S; Bonde S; Sharma S; Saraogi G
    Biomed Pharmacother; 2018 Mar; 99():735-745. PubMed ID: 29710471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a Heat Diffusion Model to Detect Potential Drug Resistance Genes of
    Cui ZJ; Zhang WT; Zhu Q; Zhang QY; Zhang HY
    Protein Pept Lett; 2020; 27(8):711-717. PubMed ID: 32167422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern of drug resistance of Mycobacterium tuberculosis clinical isolates to first-line antituberculosis drugs in pulmonary cases.
    Kalo D; Kant S; Srivastava K; Sharma AK
    Lung India; 2015; 32(4):339-41. PubMed ID: 26180382
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.