These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 34439148)
1. Preliminary Report on Computed Tomography Radiomics Features as Biomarkers to Immunotherapy Selection in Lung Adenocarcinoma Patients. Granata V; Fusco R; Costa M; Picone C; Cozzi D; Moroni C; La Casella GV; Montanino A; Monti R; Mazzoni F; Grassi R; Malagnino VG; Cappabianca S; Grassi R; Miele V; Petrillo A Cancers (Basel); 2021 Aug; 13(16):. PubMed ID: 34439148 [TBL] [Abstract][Full Text] [Related]
2. A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts ALK Rearrangement Status in Lung Adenocarcinoma. Chang C; Sun X; Wang G; Yu H; Zhao W; Ge Y; Duan S; Qian X; Wang R; Lei B; Wang L; Liu L; Ruan M; Yan H; Liu C; Chen J; Xie W Front Oncol; 2021; 11():603882. PubMed ID: 33738250 [TBL] [Abstract][Full Text] [Related]
3. Novel Non-Invasive Radiomic Signature on CT Scans Predicts Response to Platinum-Based Chemotherapy and Is Prognostic of Overall Survival in Small Cell Lung Cancer. Jain P; Khorrami M; Gupta A; Rajiah P; Bera K; Viswanathan VS; Fu P; Dowlati A; Madabhushi A Front Oncol; 2021; 11():744724. PubMed ID: 34745966 [TBL] [Abstract][Full Text] [Related]
4. Development of Radiomic-Based Model to Predict Clinical Outcomes in Non-Small Cell Lung Cancer Patients Treated with Immunotherapy. Tankyevych O; Trousset F; Latappy C; Berraho M; Dutilh J; Tasu JP; Lamour C; Cheze Le Rest C Cancers (Basel); 2022 Nov; 14(23):. PubMed ID: 36497415 [TBL] [Abstract][Full Text] [Related]
5. Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma. Nie P; Yang G; Wang N; Yan L; Miao W; Duan Y; Wang Y; Gong A; Zhao Y; Wu J; Zhang C; Wang M; Cui J; Yu M; Li D; Sun Y; Wang Y; Wang Z Eur J Nucl Med Mol Imaging; 2021 Jan; 48(1):217-230. PubMed ID: 32451603 [TBL] [Abstract][Full Text] [Related]
6. A short-term follow-up CT based radiomics approach to predict response to immunotherapy in advanced non-small-cell lung cancer. Gong J; Bao X; Wang T; Liu J; Peng W; Shi J; Wu F; Gu Y Oncoimmunology; 2022; 11(1):2028962. PubMed ID: 35096486 [TBL] [Abstract][Full Text] [Related]
8. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact. Jiang Y; Che S; Ma S; Liu X; Guo Y; Liu A; Li G; Li Z Cancer Imaging; 2021 Jan; 21(1):1. PubMed ID: 33407884 [TBL] [Abstract][Full Text] [Related]
9. Value of computed tomography radiomics combined with inflammation indices in predicting the efficacy of immunotherapy in patients with locally advanced and metastatic non-small cell lung cancer. Shao H; Zhu J; Shi L; Yao J; Wang Y; Ma C; Swierniak A; Ni B J Thorac Dis; 2024 May; 16(5):3213-3227. PubMed ID: 38883654 [TBL] [Abstract][Full Text] [Related]
10. Application of radiomics based on chest CT-enhanced dual-phase imaging in the immunotherapy of non-small cell lung cancer. Ma ZP; Li XL; Gao K; Zhang TL; Wang HD; Zhao YX J Xray Sci Technol; 2023; 31(6):1333-1340. PubMed ID: 37840466 [TBL] [Abstract][Full Text] [Related]
11. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Sun R; Limkin EJ; Vakalopoulou M; Dercle L; Champiat S; Han SR; Verlingue L; Brandao D; Lancia A; Ammari S; Hollebecque A; Scoazec JY; Marabelle A; Massard C; Soria JC; Robert C; Paragios N; Deutsch E; Ferté C Lancet Oncol; 2018 Sep; 19(9):1180-1191. PubMed ID: 30120041 [TBL] [Abstract][Full Text] [Related]
12. Enhanced CT-Based Radiomics to Predict Micropapillary Pattern Within Lung Invasive Adenocarcinoma. Xu Y; Ji W; Hou L; Lin S; Shi Y; Zhou C; Meng Y; Wang W; Chen X; Wang M; Yang H Front Oncol; 2021; 11():704994. PubMed ID: 34513686 [TBL] [Abstract][Full Text] [Related]
13. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction. Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003 [TBL] [Abstract][Full Text] [Related]
14. Radiomics and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography in the Breast Lesions Classification. Fusco R; Piccirillo A; Sansone M; Granata V; Rubulotta MR; Petrosino T; Barretta ML; Vallone P; Di Giacomo R; Esposito E; Di Bonito M; Petrillo A Diagnostics (Basel); 2021 Apr; 11(5):. PubMed ID: 33946333 [TBL] [Abstract][Full Text] [Related]
15. Computed Tomography-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study. Fan S; Li X; Cui X; Zheng L; Ren X; Ma W; Ye Z Acad Radiol; 2019 Dec; 26(12):1633-1640. PubMed ID: 30929999 [TBL] [Abstract][Full Text] [Related]
16. Differentiating the pathological subtypes of primary lung cancer for patients with brain metastases based on radiomics features from brain CT images. Zhang J; Jin J; Ai Y; Zhu K; Xiao C; Xie C; Jin X Eur Radiol; 2021 Feb; 31(2):1022-1028. PubMed ID: 32822055 [TBL] [Abstract][Full Text] [Related]
17. Plausibility and redundancy analysis to select FDG-PET textural features in non-small cell lung cancer. Pfaehler E; Mesotten L; Zhovannik I; Pieplenbosch S; Thomeer M; Vanhove K; Adriaensens P; Boellaard R Med Phys; 2021 Mar; 48(3):1226-1238. PubMed ID: 33368399 [TBL] [Abstract][Full Text] [Related]
18. A CT-Based Radiomic Signature Can Be Prognostic for 10-Months Overall Survival in Metastatic Tumors Treated with Nivolumab: An Exploratory Study. Corino VDA; Bologna M; Calareso G; Licitra L; Ghi M; Rinaldi G; Caponigro F; Morelli F; Airoldi M; Allegrini G; Cassano A; Ferrari D; Mirabile A; Tosoni A; Galizia D; Merlano M; Sponghini A; Moretti G; Mainardi L; Bossi P Diagnostics (Basel); 2021 May; 11(6):. PubMed ID: 34071518 [TBL] [Abstract][Full Text] [Related]
19. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma. Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116 [TBL] [Abstract][Full Text] [Related]
20. A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma. Lu X; Li M; Zhang H; Hua S; Meng F; Yang H; Li X; Cao D Phys Med Biol; 2020 Mar; 65(5):055012. PubMed ID: 31978901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]