These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 34439148)
21. Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology. Wu W; Parmar C; Grossmann P; Quackenbush J; Lambin P; Bussink J; Mak R; Aerts HJ Front Oncol; 2016; 6():71. PubMed ID: 27064691 [TBL] [Abstract][Full Text] [Related]
22. Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics. Kadoya N; Tanaka S; Kajikawa T; Tanabe S; Abe K; Nakajima Y; Yamamoto T; Takahashi N; Takeda K; Dobashi S; Takeda K; Nakane K; Jingu K Med Phys; 2020 Jun; 47(5):2197-2205. PubMed ID: 32096876 [TBL] [Abstract][Full Text] [Related]
23. A radiomic approach to predicting nodal relapse and disease-specific survival in patients treated with stereotactic body radiation therapy for early-stage non-small cell lung cancer. Franceschini D; Cozzi L; De Rose F; Navarria P; Fogliata A; Franzese C; Pezzulla D; Tomatis S; Reggiori G; Scorsetti M Strahlenther Onkol; 2020 Oct; 196(10):922-931. PubMed ID: 31722061 [TBL] [Abstract][Full Text] [Related]
24. Computed tomography-based radiomics quantification predicts epidermal growth factor receptor mutation status and efficacy of first-line targeted therapy in lung adenocarcinoma. Jiang M; Yang P; Li J; Peng W; Pu X; Chen B; Li J; Wang J; Wu L Front Oncol; 2022; 12():985284. PubMed ID: 36052262 [TBL] [Abstract][Full Text] [Related]
25. Development and validation of an interpretable radiomic signature for preoperative estimation of tumor mutational burden in lung adenocarcinoma. Zhang Y; Yang Y; Ma Y; Liu Y; Ye Z Front Genet; 2024; 15():1367434. PubMed ID: 38660677 [TBL] [Abstract][Full Text] [Related]
26. A pre-treatment CT-based weighted radiomic approach combined with clinical characteristics to predict durable clinical benefits of immunotherapy in advanced lung cancer. Zhu Z; Chen M; Hu G; Pan Z; Han W; Tan W; Zhou Z; Wang M; Mao L; Li X; Sui X; Song L; Xu Y; Song W; Yu Y; Jin Z Eur Radiol; 2023 Jun; 33(6):3918-3930. PubMed ID: 36515714 [TBL] [Abstract][Full Text] [Related]
27. Differentiation of predominant subtypes of lung adenocarcinoma using a quantitative radiomics approach on CT. Park S; Lee SM; Noh HN; Hwang HJ; Kim S; Do KH; Seo JB Eur Radiol; 2020 Sep; 30(9):4883-4892. PubMed ID: 32300970 [TBL] [Abstract][Full Text] [Related]
28. Combination of Peri- and Intratumoral Radiomic Features on Baseline CT Scans Predicts Response to Chemotherapy in Lung Adenocarcinoma. Khorrami M; Khunger M; Zagouras A; Patil P; Thawani R; Bera K; Rajiah P; Fu P; Velcheti V; Madabhushi A Radiol Artif Intell; 2019 Mar; 1(2):e180012. PubMed ID: 32076657 [TBL] [Abstract][Full Text] [Related]
29. Predictive Radiomic Models for the Chemotherapy Response in Non-Small-Cell Lung Cancer based on Computerized-Tomography Images. Chang R; Qi S; Yue Y; Zhang X; Song J; Qian W Front Oncol; 2021; 11():646190. PubMed ID: 34307127 [TBL] [Abstract][Full Text] [Related]
30. Combination of clinical, radiomic, and "delta" radiomic features in survival prediction of metastatic gastroesophageal adenocarcinoma. Krishna S; Sertic A; Liu ZA; Liu Z; Darling GE; Yeung J; Wong R; Chen EX; Kalimuthu S; Allen MJ; Suzuki C; Panov E; Ma LX; Bach Y; Jang RW; Swallow CJ; Brar S; Elimova E; Veit-Haibach P Front Oncol; 2023; 13():892393. PubMed ID: 37645426 [TBL] [Abstract][Full Text] [Related]
31. Pre-operative Prediction of Ki-67 Expression in Various Histological Subtypes of Lung Adenocarcinoma Based on CT Radiomic Features. Huang Z; Lyu M; Ai Z; Chen Y; Liang Y; Xiang Z Front Surg; 2021; 8():736737. PubMed ID: 34733879 [No Abstract] [Full Text] [Related]
32. Development and Validation of a Radiomics Nomogram Based on Yang B; Zhong J; Zhong J; Ma L; Li A; Ji H; Zhou C; Duan S; Wang Q; Zhu C; Tian J; Zhang L; Wang F; Zhu H; Lu G Front Oncol; 2020; 10():1042. PubMed ID: 32766134 [No Abstract] [Full Text] [Related]
33. Comparison of a radiomic biomarker with volumetric analysis for decoding tumour phenotypes of lung adenocarcinoma with different disease-specific survival. Yuan M; Zhang YD; Pu XH; Zhong Y; Li H; Wu JF; Yu TF Eur Radiol; 2017 Nov; 27(11):4857-4865. PubMed ID: 28523350 [TBL] [Abstract][Full Text] [Related]
34. Use of CT radiomics to differentiate minimally invasive adenocarcinomas and invasive adenocarcinomas presenting as pure ground-glass nodules larger than 10 mm. Xiong Z; Jiang Y; Che S; Zhao W; Guo Y; Li G; Liu A; Li Z Eur J Radiol; 2021 Aug; 141():109772. PubMed ID: 34022476 [TBL] [Abstract][Full Text] [Related]
35. [Application of radiomics captured from CT to predict the EGFR mutation status and TKIs therapeutic sensitivity of advanced lung adenocarcinoma]. Yang CS; Chen WD; Gong GZ; Li ZJ; Qiu QT; Yin Y Zhonghua Zhong Liu Za Zhi; 2019 Apr; 41(4):282-287. PubMed ID: 31014053 [No Abstract] [Full Text] [Related]
36. Utility of CT radiomics for prediction of PD-L1 expression in advanced lung adenocarcinomas. Yoon J; Suh YJ; Han K; Cho H; Lee HJ; Hur J; Choi BW Thorac Cancer; 2020 Apr; 11(4):993-1004. PubMed ID: 32043309 [TBL] [Abstract][Full Text] [Related]
37. The predictive value of CT-based radiomics in differentiating indolent from invasive lung adenocarcinoma in patients with pulmonary nodules. She Y; Zhang L; Zhu H; Dai C; Xie D; Xie H; Zhang W; Zhao L; Zou L; Fei K; Sun X; Chen C Eur Radiol; 2018 Dec; 28(12):5121-5128. PubMed ID: 29869172 [TBL] [Abstract][Full Text] [Related]
38. Progression-Free Survival Prediction in Small Cell Lung Cancer Based on Radiomics Analysis of Contrast-Enhanced CT. Chen N; Li R; Jiang M; Guo Y; Chen J; Sun D; Wang L; Yao X Front Med (Lausanne); 2022; 9():833283. PubMed ID: 35280863 [TBL] [Abstract][Full Text] [Related]
39. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. Yang C; Chen W; Gong G; Li Z; Qiu Q; Yin Y Transl Cancer Res; 2020 Nov; 9(11):6683-6690. PubMed ID: 35117278 [TBL] [Abstract][Full Text] [Related]
40. Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: An early report. Tunali I; Gray JE; Qi J; Abdalah M; Jeong DK; Guvenis A; Gillies RJ; Schabath MB Lung Cancer; 2019 Mar; 129():75-79. PubMed ID: 30797495 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]