BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 34439819)

  • 1. Two Auxinic Herbicides Affect
    Ludwig-Müller J; Rattunde R; Rößler S; Liedel K; Benade F; Rost A; Becker J
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus.
    Wei C; Zhu L; Wen J; Yi B; Ma C; Tu J; Shen J; Fu T
    Plant Sci; 2018 May; 270():97-113. PubMed ID: 29576090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis.
    Raghavan C; Ong EK; Dalling MJ; Stevenson TW
    Funct Integr Genomics; 2006 Jan; 6(1):60-70. PubMed ID: 16317577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene.
    Kraft M; Kuglitsch R; Kwiatkowski J; Frank M; Grossmann K
    J Exp Bot; 2007; 58(6):1497-503. PubMed ID: 17317672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba.
    Gleason C; Foley RC; Singh KB
    PLoS One; 2011 Mar; 6(3):e17245. PubMed ID: 21408147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solanum lycopersicum IAA15 functions in the 2,4-dichlorophenoxyacetic acid herbicide mechanism of action by mediating abscisic acid signalling.
    Xu T; Wang Y; Liu X; Gao S; Qi M; Li T
    J Exp Bot; 2015 Jul; 66(13):3977-90. PubMed ID: 25948703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GH3 expression and IAA-amide synthetase activity in pea (Pisum sativum L.) seedlings are regulated by light, plant hormones and auxinic herbicides.
    Ostrowski M; Jakubowska A
    J Plant Physiol; 2013 Mar; 170(4):361-8. PubMed ID: 23332498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid.
    Chen J; Mao L; Lu W; Ying T; Luo Z
    Planta; 2016 Jan; 243(1):183-97. PubMed ID: 26373937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat.
    Zhao MR; Han YY; Feng YN; Li F; Wang W
    Plant Cell Rep; 2012 Apr; 31(4):671-85. PubMed ID: 22076248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes.
    Zhang Y; Li Y; Hassan MJ; Li Z; Peng Y
    BMC Plant Biol; 2020 Apr; 20(1):150. PubMed ID: 32268884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide and indole-3-acetic acid cotreatment regulates the root growth of Brassica napus L. via multiple phytohormone pathways.
    Xie L; Chen F; Du H; Zhang X; Wang X; Yao G; Xu B
    BMC Plant Biol; 2020 Mar; 20(1):101. PubMed ID: 32138661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds.
    Hermann K; Meinhard J; Dobrev P; Linkies A; Pesek B; Hess B; Machácková I; Fischer U; Leubner-Metzger G
    J Exp Bot; 2007; 58(11):3047-60. PubMed ID: 17761730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide and ABA cotreatment regulates root growth of Brassica napus L. by regulating IAA/ABA.
    Xie LL; Chen F; Zou XL; Shen SS; Wang XG; Yao GX; Xu BB
    J Plant Physiol; 2019 Sep; 240():153007. PubMed ID: 31310905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transcriptome analysis reveals a role for the indole GLS-linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.).
    Liu L; Liu F; Chu J; Yi X; Fan W; Tang T; Chen G; Guo Q; Zhao X
    BMC Plant Biol; 2019 Jun; 19(1):264. PubMed ID: 31215396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patatin-related phospholipase pPLAIIIδ influences auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus.
    Dong Y; Li M; Zhang P; Wang X; Fan C; Zhou Y
    BMC Plant Biol; 2014 Nov; 14():332. PubMed ID: 25428555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition.
    Hansen H; Grossmann K
    Plant Physiol; 2000 Nov; 124(3):1437-48. PubMed ID: 11080318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increases in jasmonic acid caused by indole-3-acetic acid and auxin herbicides in cleavers (Galium aparine).
    Grossmann K; Rosenthal C; Kwiatkowski J
    J Plant Physiol; 2004 Jul; 161(7):809-14. PubMed ID: 15310070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic analysis reveals the mechanism of thermosensitive genic male sterility (TGMS) of Brassica napus under the high temperature inducement.
    Tang X; Hao YJ; Lu JX; Lu G; Zhang T
    BMC Genomics; 2019 Aug; 20(1):644. PubMed ID: 31409283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development.
    Böttcher C; Boss PK; Davies C
    J Exp Bot; 2011 Aug; 62(12):4267-80. PubMed ID: 21543520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethylene involvement in silique and seed development of canola, Brassica napus L.
    Walton LJ; Kurepin LV; Yeung EC; Shah S; Emery RJ; Reid DM; Pharis RP
    Plant Physiol Biochem; 2012 Sep; 58():142-50. PubMed ID: 22809685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.