BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3443982)

  • 21. Substrate dependence of metabolic state and coronary flow in perfused rat heart.
    Starnes JW; Wilson DF; Erecińska M
    Am J Physiol; 1985 Oct; 249(4 Pt 2):H799-806. PubMed ID: 4051017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of gated perfusion to study early effects of anoxia on cardiac energy metabolism: a new 31P NMR method.
    Barbour RL; Sotak CH; Levy GC; Chan SH
    Biochemistry; 1984 Dec; 23(25):6053-62. PubMed ID: 6525343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beneficial effects of diltiazem on the ischemic derangements of the myocardial metabolism assessed by 31P-NMR in the isolated perfused rat heart.
    Nakazawa M; Tamatsu H; Tsuchihashi H; Nagatomo T; Imai S
    Jpn J Pharmacol; 1985 Sep; 39(1):51-8. PubMed ID: 4068390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inorganic phosphate and coronary perfusion pressure mediate contractile dysfunction during mild ischemia.
    Miyamae M; Camacho SA; Rooney WD; Modin G; Zhou HZ; Weiner MW; Figueredo VM
    Am J Physiol; 1997 Aug; 273(2 Pt 2):H566-72. PubMed ID: 9277470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyperperfusion and cardioplegia effects on myocardial high-energy phosphate distribution and energy expenditure.
    Zhang J; Shorr L; Yoshiyama M; Merkle H; Garwood M; Homans DC; Bache RJ; Uğurbil K; From AH
    Am J Physiol; 1994 Sep; 267(3 Pt 2):H894-904. PubMed ID: 8092293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A phosphorus-31 nuclear magnetic resonance study of the metabolic, contractile, and ionic consequences of induced calcium alterations in the isovolumic rat heart.
    Hoerter JA; Miceli MV; Renlund DG; Jacobus WE; Gerstenblith G; Lakatta EG
    Circ Res; 1986 Apr; 58(4):539-51. PubMed ID: 2421940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 31P nuclear magnetic resonance study of the effects of the calcium ion channel antagonist fantofarone on the rat heart.
    Vander Elst L; Chatelain P; Manning AS; Laruel R; Van Haverbeke Y; Muller RN
    Eur J Pharmacol; 1994 Jan; 251(2-3):163-72. PubMed ID: 8149974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of alpha-tocopherol on high energy phosphate metabolite levels in rat heart by 31P-NMR using a Langendorff perfusion technique.
    Kotegawa M; Sugiyama M; Shoji T; Haramaki N; Ogura R
    J Mol Cell Cardiol; 1993 Sep; 25(9):1067-74. PubMed ID: 8283470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-energy phosphate responses to tachycardia and inotropic stimulation in left ventricular hypertrophy.
    Bache RJ; Zhang J; Path G; Merkle H; Hendrich K; From AH; Ugurbil K
    Am J Physiol; 1994 May; 266(5 Pt 2):H1959-70. PubMed ID: 8203595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytosolic adenylates and adenosine release in perfused working heart. Comparison of whole tissue with cytosolic non-aqueous fractionation analyses.
    Bünger R; Soboll S
    Eur J Biochem; 1986 Aug; 159(1):203-13. PubMed ID: 3091368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative 13C and 31P NMR assessment of altered metabolism during graded reductions in coronary flow in intact rat hearts.
    Weiss RG; Chacko VP; Glickson JD; Gerstenblith G
    Proc Natl Acad Sci U S A; 1989 Aug; 86(16):6426-30. PubMed ID: 2762333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric oxide induced contractile dysfunction is related to a reduction in myocardial energy generation.
    Kelm M; Schäfer S; Dahmann R; Dolu B; Perings S; Decking UK; Schrader J; Strauer BE
    Cardiovasc Res; 1997 Nov; 36(2):185-94. PubMed ID: 9463630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hypoperfusion-induced contractile failure does not require changes in cardiac energetics.
    Saupe KW; Eberli FR; Ingwall JS; Apstein CS
    Am J Physiol; 1999 May; 276(5):H1715-23. PubMed ID: 10330258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies.
    Kupriyanov VV; Ya Steinschneider A; Ruuge EK; Kapel'ko VI; Yu Zueva M; Lakomkin VL; Smirnov VN; Saks VA
    Biochim Biophys Acta; 1984 Dec; 805(4):319-31. PubMed ID: 6509089
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal relation between energy metabolism and myocardial function during ischemia and reperfusion.
    Clarke K; O'Connor AJ; Willis RJ
    Am J Physiol; 1987 Aug; 253(2 Pt 2):H412-21. PubMed ID: 3618814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Oxidative energy metabolism and cardiac contractility in rat heart during graded reductions of coronary flow].
    Imamura E
    Hokkaido Igaku Zasshi; 1995 May; 70(3):429-36. PubMed ID: 7590594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Verapamil attenuates ATP depletion during hypoxia: 31P NMR studies of the isolated rat heart.
    Neubauer S; Ingwall JS
    J Mol Cell Cardiol; 1989 Nov; 21(11):1163-78. PubMed ID: 2607547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of age on phosphorylated compounds and mechanical activity of isolated rat heart: a 31P-NMR study.
    Finelli C; Aussedat J; Ray A; Lortet S; Lavanchy N; Guarnieri C; Caldarera CM; Rossi A
    Cardiovasc Res; 1993 Nov; 27(11):1978-82. PubMed ID: 8287406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.