These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation. Strong PJ; Kalyuzhnaya M; Silverman J; Clarke WP Bioresour Technol; 2016 Sep; 215():314-323. PubMed ID: 27146469 [TBL] [Abstract][Full Text] [Related]
4. Elucidating the key environmental parameters during the production of ectoines from biogas by mixed methanotrophic consortia. Carmona-Martínez AA; Marcos-Rodrigo E; Bordel S; Marín D; Herrero-Lobo R; García-Encina PA; Muñoz R J Environ Manage; 2021 Nov; 298():113462. PubMed ID: 34365180 [TBL] [Abstract][Full Text] [Related]
10. Methane as a resource: can the methanotrophs add value? Strong PJ; Xie S; Clarke WP Environ Sci Technol; 2015 Apr; 49(7):4001-18. PubMed ID: 25723373 [TBL] [Abstract][Full Text] [Related]
11. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review. Zhu J; Wang Q; Yuan M; Tan GA; Sun F; Wang C; Wu W; Lee PH Water Res; 2016 Mar; 90():203-215. PubMed ID: 26734780 [TBL] [Abstract][Full Text] [Related]
12. Technologies for the bioconversion of methane into more valuable products. Cantera S; Muñoz R; Lebrero R; López JC; Rodríguez Y; García-Encina PA Curr Opin Biotechnol; 2018 Apr; 50():128-135. PubMed ID: 29316497 [TBL] [Abstract][Full Text] [Related]
13. Production of polyhydroxyalkanoates (PHA) using sludge from different wastewater treatment processes and the potential for medical and pharmaceutical applications. Lam W; Wang Y; Chan PL; Chan SW; Tsang YF; Chua H; Yu PHF Environ Technol; 2017 Jul; 38(13-14):1779-1791. PubMed ID: 28387154 [TBL] [Abstract][Full Text] [Related]
14. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bengtsson S; Werker A; Christensson M; Welander T Bioresour Technol; 2008 Feb; 99(3):509-16. PubMed ID: 17360180 [TBL] [Abstract][Full Text] [Related]
15. Polyhydroxyalkanoates production from methane emissions in Sphagnum mosses: Assessing the effect of temperature and phosphorus limitation. Pérez R; Casal J; Muñoz R; Lebrero R Sci Total Environ; 2019 Oct; 688():684-690. PubMed ID: 31254834 [TBL] [Abstract][Full Text] [Related]
16. Methane oxidation in industrial biogas plants-Insights in a novel methanotrophic environment evidenced by pmoA gene analyses and stable isotope labelling studies. May T; Polag D; Keppler F; Greule M; Müller L; König H J Biotechnol; 2018 Mar; 270():77-84. PubMed ID: 29408650 [TBL] [Abstract][Full Text] [Related]
17. Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: Techno-economic analysis and ex-ante environmental assessment. Fernández-Dacosta C; Posada JA; Kleerebezem R; Cuellar MC; Ramirez A Bioresour Technol; 2015 Jun; 185():368-77. PubMed ID: 25796067 [TBL] [Abstract][Full Text] [Related]
18. Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) as a technology platform for greenhouse gas abatement in wastewater treatment plants: State-of-the-art and challenges. Contreras JA; Valenzuela EI; Quijano G J Environ Manage; 2022 Oct; 319():115671. PubMed ID: 35816965 [TBL] [Abstract][Full Text] [Related]
19. Methane monooxygenases: central enzymes in methanotrophy with promising biotechnological applications. Khider MLK; Brautaset T; Irla M World J Microbiol Biotechnol; 2021 Mar; 37(4):72. PubMed ID: 33765207 [TBL] [Abstract][Full Text] [Related]
20. A systematic comparison of ectoine production from upgraded biogas using Methylomicrobium alcaliphilum and a mixed haloalkaliphilic consortium. Cantera S; Phandanouvong-Lozano V; Pascual C; García-Encina PA; Lebrero R; Hay A; Muñoz R Waste Manag; 2020 Feb; 102():773-781. PubMed ID: 31812092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]