These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 34439886)
1. Phenolic Composition of Grape Stems from Different Spanish Varieties and Vintages. Esparza I; Moler JA; Arteta M; Jiménez-Moreno N; Ancín-Azpilicueta C Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439886 [TBL] [Abstract][Full Text] [Related]
2. Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.). González-Centeno MR; Jourdes M; Femenia A; Simal S; Rosselló C; Teissedre PL J Agric Food Chem; 2012 Dec; 60(48):11850-8. PubMed ID: 23101762 [TBL] [Abstract][Full Text] [Related]
3. Study of the Cluster Thinning Grape as a Source of Phenolic Compounds and Evaluation of Its Antioxidant Potential. Carmona-Jiménez Y; Palma M; Guillén-Sánchez DA; García-Moreno MV Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33562786 [TBL] [Abstract][Full Text] [Related]
5. Phenolic characteristics acquired by berry skins of Vitis vinifera cv. Tempranillo in response to close-to-ambient solar ultraviolet radiation are mostly reflected in the resulting wines. Del-Castillo-Alonso MÁ; Monforte L; Tomás-Las-Heras R; Martínez-Abaigar J; Núñez-Olivera E J Sci Food Agric; 2020 Jan; 100(1):401-409. PubMed ID: 31637723 [TBL] [Abstract][Full Text] [Related]
6. Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.). González-Centeno MR; Jourdes M; Femenia A; Simal S; Rosselló C; Teissedre PL J Agric Food Chem; 2013 Nov; 61(47):11579-87. PubMed ID: 24206441 [TBL] [Abstract][Full Text] [Related]
7. Assessment of polyphenolic content, antioxidant activity, protection against ROS-induced DNA damage and anticancer activity of Vitis vinifera stem extracts. Apostolou A; Stagos D; Galitsiou E; Spyrou A; Haroutounian S; Portesis N; Trizoglou I; Wallace Hayes A; Tsatsakis AM; Kouretas D Food Chem Toxicol; 2013 Nov; 61():60-8. PubMed ID: 23380202 [TBL] [Abstract][Full Text] [Related]
8. A Review on Stems Composition and Their Impact on Wine Quality. Blackford M; Comby M; Zeng L; Dienes-Nagy Á; Bourdin G; Lorenzini F; Bach B Molecules; 2021 Feb; 26(5):. PubMed ID: 33669129 [TBL] [Abstract][Full Text] [Related]
9. Bioactive compounds and total antioxidant capacity of cane residues from different grape varieties. Ferreyra SG; Antoniolli A; Bottini R; Fontana A J Sci Food Agric; 2020 Jan; 100(1):376-383. PubMed ID: 31595514 [TBL] [Abstract][Full Text] [Related]
10. Influence of heating on the polyphenolic content and antioxidant activity of grape seed flour. Ross CF; Hoye C; Fernandez-Plotka VC J Food Sci; 2011 Aug; 76(6):C884-90. PubMed ID: 22417486 [TBL] [Abstract][Full Text] [Related]
11. Chemical characterization of red wine grape (Vitis vinifera and Vitis interspecific hybrids) and pomace phenolic extracts and their biological activity against Streptococcus mutans. Thimothe J; Bonsi IA; Padilla-Zakour OI; Koo H J Agric Food Chem; 2007 Dec; 55(25):10200-7. PubMed ID: 17999462 [TBL] [Abstract][Full Text] [Related]
12. Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and Response Surface Methodology. Domínguez-Perles R; Teixeira AI; Rosa E; Barros AI Food Chem; 2014 Dec; 164():339-46. PubMed ID: 24996343 [TBL] [Abstract][Full Text] [Related]
13. Influence of climatic conditions on the phenolic composition of Vitis vinifera L. cv. Graciano. Ferrer-Gallego R; Hernández-Hierro JM; Rivas-Gonzalo JC; Escribano-Bailón MT Anal Chim Acta; 2012 Jun; 732():73-7. PubMed ID: 22688036 [TBL] [Abstract][Full Text] [Related]
14. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). de la Cerda-Carrasco A; López-Solís R; Nuñez-Kalasic H; Peña-Neira Á; Obreque-Slier E J Sci Food Agric; 2015 May; 95(7):1521-7. PubMed ID: 25082193 [TBL] [Abstract][Full Text] [Related]
15. Polyphenol, antioxidant and antimicrobial potential of six different white and red wine grape processing leftovers. Trošt K; Klančnik A; Mozetič Vodopivec B; Sternad Lemut M; Jug Novšak K; Raspor P; Smole Možina S J Sci Food Agric; 2016 Nov; 96(14):4809-4820. PubMed ID: 27485794 [TBL] [Abstract][Full Text] [Related]
16. Red Grape By-Products from the Demarcated Douro Region: Chemical Analysis, Antioxidant Potential and Antimicrobial Activity against Food-Borne Pathogens. Silva A; Martins R; Silva V; Fernandes F; Carvalho R; Aires A; Igrejas G; Falco V; Valentão P; Poeta P Molecules; 2024 Oct; 29(19):. PubMed ID: 39407636 [TBL] [Abstract][Full Text] [Related]
17. Potential of Grape Wastes as a Natural Source of Bioactive Compounds. Tang GY; Zhao CN; Liu Q; Feng XL; Xu XY; Cao SY; Meng X; Li S; Gan RY; Li HB Molecules; 2018 Oct; 23(10):. PubMed ID: 30314259 [TBL] [Abstract][Full Text] [Related]
18. Influence of genetic and vintage factors in flavan-3-ol composition of grape seeds of a segregating Vitis vinifera population. Hernández MM; Song S; Menéndez CM J Sci Food Agric; 2017 Jan; 97(1):236-243. PubMed ID: 26992139 [TBL] [Abstract][Full Text] [Related]
19. New grape stems-based liqueur: Physicochemical and phytochemical evaluation. Barros A; Gouvinhas I; Machado N; Pinto J; Cunha M; Rosa E; Domínguez-Perles R Food Chem; 2016 Jan; 190():896-903. PubMed ID: 26213054 [TBL] [Abstract][Full Text] [Related]
20. Characterization of neural network generalization in the determination of pH and anthocyanin content of wine grape in new vintages and varieties. Gomes V; Fernandes A; Martins-Lopes P; Pereira L; Mendes Faia A; Melo-Pinto P Food Chem; 2017 Mar; 218():40-46. PubMed ID: 27719927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]