These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34439895)

  • 1. Engineering of Thermal Stability in a Cold-Active Oligo-1,6-Glucosidase from
    Berlina YY; Petrovskaya LE; Kryukova EA; Shingarova LN; Gapizov SS; Kryukova MV; Rivkina EM; Kirpichnikov MP; Dolgikh DA
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the critical sites for protein thermostabilization by proline substitution in oligo-1,6-glucosidase from Bacillus coagulans ATCC 7050 and the evolutionary consideration of proline residues.
    Watanabe K; Kitamura K; Suzuki Y
    Appl Environ Microbiol; 1996 Jun; 62(6):2066-73. PubMed ID: 8787404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustered proline residues around the active-site cleft in thermostable oligo-1,6-glucosidase of Bacillus flavocaldarius KP1228.
    Kashiwabara S; Matsuki Y; Kishimoto T; Suzuki Y
    Biosci Biotechnol Biochem; 1998 Jun; 62(6):1093-102. PubMed ID: 9692189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Irrefragable proof supporting the proline rule.
    Watanabe K; Masuda T; Ohashi H; Mihara H; Suzuki Y
    Eur J Biochem; 1994 Dec; 226(2):277-83. PubMed ID: 8001545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosidasius KP1006.
    Watanabe K; Chishiro K; Kitamura K; Suzuki Y
    J Biol Chem; 1991 Dec; 266(36):24287-94. PubMed ID: 1761534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization.
    Watanabe K; Hata Y; Kizaki H; Katsube Y; Suzuki Y
    J Mol Biol; 1997 May; 269(1):142-53. PubMed ID: 9193006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of proline insertions on the thermostability of a barley alpha-glucosidase.
    Muslin EH; Clark SE; Henson CA
    Protein Eng; 2002 Jan; 15(1):29-33. PubMed ID: 11842235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel low-temperature-active β-glucosidase from symbiotic Serratia sp. TN49 reveals four essential positions for substrate accommodation.
    Zhou J; Zhang R; Shi P; Huang H; Meng K; Yuan T; Yang P; Yao B
    Appl Microbiol Biotechnol; 2011 Oct; 92(2):305-15. PubMed ID: 21559826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of catalytic and substrate-binding site residues in Bacillus cereus ATCC7064 oligo-1,6-glucosidase.
    Watanabe K; Miyake K; Suzuki Y
    Biosci Biotechnol Biochem; 2001 Sep; 65(9):2058-64. PubMed ID: 11676021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermostability improvement of a streptomyces xylanase by introducing proline and glutamic acid residues.
    Wang K; Luo H; Tian J; Turunen O; Huang H; Shi P; Hua H; Wang C; Wang S; Yao B
    Appl Environ Microbiol; 2014 Apr; 80(7):2158-65. PubMed ID: 24463976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11.
    Zhou C; Xue Y; Ma Y
    BMC Biotechnol; 2015 Oct; 15():97. PubMed ID: 26490269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for thermal properties of Streptomyces thermovulgaris fumarase C hinge at hydrophilic amino acids R163, E170 and S347.
    Lin W; Chan M; Goh LL; Sim TS
    Appl Microbiol Biotechnol; 2007 May; 75(2):329-35. PubMed ID: 17245573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacillus thermoamyloliquefaciens KP1071 alpha-glucosidase II is a thermostable M(r) 540,000 homohexameric alpha-glucosidase with both exo-alpha-1,4-glucosidase and oligo-1,6-glucosidase activities.
    Suzuki Y; Nobiki M; Matsuda M; Sawai T
    Eur J Biochem; 1997 Apr; 245(1):129-36. PubMed ID: 9128733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly-->Pro substitution near the active site on its catalytic activity and stability.
    Kulakova L; Galkin A; Nakayama T; Nishino T; Esaki N
    Biochim Biophys Acta; 2004 Jan; 1696(1):59-65. PubMed ID: 14726205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach.
    Rodrigues DF; Ivanova N; He Z; Huebner M; Zhou J; Tiedje JM
    BMC Genomics; 2008 Nov; 9():547. PubMed ID: 19019206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution.
    Lebbink JH; Kaper T; Bron P; van der Oost J; de Vos WM
    Biochemistry; 2000 Apr; 39(13):3656-65. PubMed ID: 10736164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Display of Oligo-α-1,6-Glycosidase from Exiguobacterium sibiricum on the Surface of Escherichia coli Cells.
    Shingarova LN; Petrovskaya LE; Kryukova EA; Gapizov SS; Dolgikh DA; Kirpichnikov MP
    Biochemistry (Mosc); 2023 May; 88(5):716-722. PubMed ID: 37331717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced catalytic site thermal stability of cold-adapted esterase EstK by a W208Y mutation.
    Boyineni J; Kim J; Kang BS; Lee C; Jang SH
    Biochim Biophys Acta; 2014 Jun; 1844(6):1076-82. PubMed ID: 24667115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and expression of a gene coding for thermostable alpha-glucosidase with a broad substrate specificity from Bacillus sp. SAM1606.
    Nakao M; Nakayama T; Kakudo A; Inohara M; Harada M; Omura F; Shibano Y
    Eur J Biochem; 1994 Mar; 220(2):293-300. PubMed ID: 8125087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligo-1,6-glucosidase from a thermophile, Bacillus thermoglucosidasius KP1006, was efficiently produced by combinatorial expression of GroEL in Escherichia coli.
    Watanabe K; Fujiwara H; Inui K; Suzuki Y
    Biotechnol Appl Biochem; 2002 Feb; 35(1):35-43. PubMed ID: 11834128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.